Methods for deep learning model failure detection and model adaption: A survey

Xiaoyu Wu, Zheng Hu, Ke Pei, Liyan Song, Zhi Cao, Shuyi Zhang
{"title":"Methods for deep learning model failure detection and model adaption: A survey","authors":"Xiaoyu Wu, Zheng Hu, Ke Pei, Liyan Song, Zhi Cao, Shuyi Zhang","doi":"10.1109/ISSREW53611.2021.00066","DOIUrl":null,"url":null,"abstract":"In real-world applications, deep learning models may fail to predict due to service switch, system upgrade, or other environmental changes. One main reason is that the model lacks generalization ability when data distribution changes. To detect model failures in advance, a direct and effective method is to monitor the data distribution in real time. This paper provides a taxonomy of data distribution shift detection methods, which is an important issue in model failure perception, and also gives a framework on model adaption and generalization under distribution shift scenario.","PeriodicalId":385392,"journal":{"name":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW53611.2021.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real-world applications, deep learning models may fail to predict due to service switch, system upgrade, or other environmental changes. One main reason is that the model lacks generalization ability when data distribution changes. To detect model failures in advance, a direct and effective method is to monitor the data distribution in real time. This paper provides a taxonomy of data distribution shift detection methods, which is an important issue in model failure perception, and also gives a framework on model adaption and generalization under distribution shift scenario.
深度学习模型故障检测与模型自适应方法综述
在实际应用中,由于服务切换、系统升级或其他环境变化,深度学习模型可能无法预测。一个主要原因是当数据分布发生变化时,模型缺乏泛化能力。为了提前发现模型故障,实时监测数据分布是一种直接有效的方法。对模型故障感知中的重要问题——数据分布移位检测方法进行了分类,并给出了分布移位场景下的模型自适应和泛化框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信