{"title":"An Efficient Co-location Pattern Approximation Algorithm Based on Clustering Branches","authors":"Duan Duanping","doi":"10.1109/PRML52754.2021.9520713","DOIUrl":null,"url":null,"abstract":"The spatial co-location pattern represents a set of spatial features, whose instances are frequently associated in the space. However, due to the exponential time complexity of the traditional algorithm, the operation efficiency of the algorithm is not high, especially in the face of massive data mining, it is unable to complete the mining task normally. Therefore, an efficient co-location pattern approximation algorithm is proposed. The new algorithm first clusters according to the feature instances, takes each center as the new instance coordinates, and associates the number of instances of each family. On this basis, the mining area is divided into branches, and the distance threshold is taken for the row spacing, so as to achieve the purpose of fast pruning. On the premise of ensuring high accuracy, the algorithm effectively solves the efficiency problem of traditional algorithms, and effectively solves the spatial colocation pattern mining of massive data. A large number of experiments show that the new algorithm has the advantages of high efficiency, stability and high accuracy.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The spatial co-location pattern represents a set of spatial features, whose instances are frequently associated in the space. However, due to the exponential time complexity of the traditional algorithm, the operation efficiency of the algorithm is not high, especially in the face of massive data mining, it is unable to complete the mining task normally. Therefore, an efficient co-location pattern approximation algorithm is proposed. The new algorithm first clusters according to the feature instances, takes each center as the new instance coordinates, and associates the number of instances of each family. On this basis, the mining area is divided into branches, and the distance threshold is taken for the row spacing, so as to achieve the purpose of fast pruning. On the premise of ensuring high accuracy, the algorithm effectively solves the efficiency problem of traditional algorithms, and effectively solves the spatial colocation pattern mining of massive data. A large number of experiments show that the new algorithm has the advantages of high efficiency, stability and high accuracy.