Towards text-based recommendations

Damien Poirier, Isabelle Tellier, F. Fessant, Julien Schluth
{"title":"Towards text-based recommendations","authors":"Damien Poirier, Isabelle Tellier, F. Fessant, Julien Schluth","doi":"10.5555/1937055.1937089","DOIUrl":null,"url":null,"abstract":"Recommender systems have become, like search engines, a tool that cannot be ignored by a website with a large selection of products, music, news or simply webpages. The performance of this kind of systems depends on a large amount of information. Meanwhile, the amount of information available in the Web is continuously growing. In this paper, we propose to provide recommendation from unstructured textual data. The method has two steps. First, subjective texts are labelled according to their expressed opinion. Second, the results are used to provide recommendations thanks to a collaborative filtering technique. We describe the complete processing chain and evaluate it.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Recommender systems have become, like search engines, a tool that cannot be ignored by a website with a large selection of products, music, news or simply webpages. The performance of this kind of systems depends on a large amount of information. Meanwhile, the amount of information available in the Web is continuously growing. In this paper, we propose to provide recommendation from unstructured textual data. The method has two steps. First, subjective texts are labelled according to their expressed opinion. Second, the results are used to provide recommendations thanks to a collaborative filtering technique. We describe the complete processing chain and evaluate it.
迈向基于文本的推荐
像搜索引擎一样,推荐系统已经成为一个网站不能忽视的工具,因为它有大量的产品、音乐、新闻或简单的网页可供选择。这类系统的性能依赖于大量的信息。与此同时,网络上可用的信息量也在不断增长。在本文中,我们提出从非结构化文本数据中提供推荐。该方法分为两个步骤。首先,主观文本根据其表达的观点被标记。其次,通过协同过滤技术,将结果用于提供推荐。我们描述了完整的加工链并对其进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信