Generation of Random Fields for Image Segmentation Techniques: A Review

Rambabu Pemula, Sagenela Vijaya Kumar, C. Nagaraju
{"title":"Generation of Random Fields for Image Segmentation Techniques: A Review","authors":"Rambabu Pemula, Sagenela Vijaya Kumar, C. Nagaraju","doi":"10.1142/s0219467823500225","DOIUrl":null,"url":null,"abstract":"Generation of random fields (GRF) for image segmentation represents partitioning an image into different regions that are homogeneous or have similar facets of the image. It is one of the most challenging tasks in image processing and a very important pre-processing step in the fields of computer vision, image analysis, medical image processing, pattern recognition, remote sensing, and geographical information system. Many researchers have presented numerous image segmentation approaches, but still, there are challenges like segmentation of low contrast images, removal of shadow in the images, reduction of high dimensional images, and computational complexity of segmentation techniques. In this review paper, the authors address these issues. The experiments are conducted and tested on the Berkely dataset (BSD500), Semantic dataset, and our own dataset, and the results are shown in the form of tables and graphs.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823500225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generation of random fields (GRF) for image segmentation represents partitioning an image into different regions that are homogeneous or have similar facets of the image. It is one of the most challenging tasks in image processing and a very important pre-processing step in the fields of computer vision, image analysis, medical image processing, pattern recognition, remote sensing, and geographical information system. Many researchers have presented numerous image segmentation approaches, but still, there are challenges like segmentation of low contrast images, removal of shadow in the images, reduction of high dimensional images, and computational complexity of segmentation techniques. In this review paper, the authors address these issues. The experiments are conducted and tested on the Berkely dataset (BSD500), Semantic dataset, and our own dataset, and the results are shown in the form of tables and graphs.
图像分割技术中随机场的产生:综述
用于图像分割的随机场(GRF)的生成表示将图像划分为均匀或具有相似图像方面的不同区域。它是图像处理中最具挑战性的任务之一,也是计算机视觉、图像分析、医学图像处理、模式识别、遥感和地理信息系统等领域中非常重要的预处理步骤。许多研究人员提出了许多图像分割方法,但仍然存在诸如低对比度图像的分割、图像阴影的去除、高维图像的降维以及分割技术的计算复杂性等挑战。在这篇综述文章中,作者对这些问题进行了讨论。实验分别在Berkely数据集(BSD500)、Semantic数据集和我们自己的数据集上进行了测试,并以图表的形式展示了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信