Object Based Image Retrieval from Database Using Combined Features

H. Kavitha, M. Sudhamani, S. Omar, G. Ismail, A. S. Ghanem
{"title":"Object Based Image Retrieval from Database Using Combined Features","authors":"H. Kavitha, M. Sudhamani, S. Omar, G. Ismail, A. S. Ghanem","doi":"10.1109/ICSIP.2014.31","DOIUrl":null,"url":null,"abstract":"Content based image retrieval (CBIR) is a promising way to address image retrieval based on the visual features of an image like color, texture and shape. Every visual feature will address a specific property of the image, so the state of the art focuses on combination of multiple visual features for content based image retrieval. In this paper we have devised a content based image retrieval system based on the combination of local and global features. The local features used are Bidirectional Empirical Mode Decomposition (BEMD) technique for edge detection and Harris corner detector to detect the corner points of an image. The global feature used is HSV colorfeature. For the experimental purpose the COIL-100 database has been used. The result show significant improvement in the retrieval accuracy when compared to the existing systems.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Content based image retrieval (CBIR) is a promising way to address image retrieval based on the visual features of an image like color, texture and shape. Every visual feature will address a specific property of the image, so the state of the art focuses on combination of multiple visual features for content based image retrieval. In this paper we have devised a content based image retrieval system based on the combination of local and global features. The local features used are Bidirectional Empirical Mode Decomposition (BEMD) technique for edge detection and Harris corner detector to detect the corner points of an image. The global feature used is HSV colorfeature. For the experimental purpose the COIL-100 database has been used. The result show significant improvement in the retrieval accuracy when compared to the existing systems.
基于对象的组合特征数据库图像检索
基于内容的图像检索(CBIR)是一种很有前途的基于图像颜色、纹理和形状等视觉特征的图像检索方法。每个视觉特征都将处理图像的特定属性,因此目前的技术重点是基于内容的图像检索的多个视觉特征的组合。本文设计了一种基于局部特征和全局特征相结合的基于内容的图像检索系统。局部特征采用双向经验模态分解(BEMD)技术进行边缘检测,Harris角点检测器检测图像的角点。使用的全局特征是HSV颜色特征。为了实验目的,使用了COIL-100数据库。结果表明,与现有系统相比,检索精度有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信