Model-based fault detection of a nonlinear system using interval type-2 fuzzy systems with non-singleton type-2 fuzzification

Hossein Monirvaghefi, M. A. Shoorehdeli
{"title":"Model-based fault detection of a nonlinear system using interval type-2 fuzzy systems with non-singleton type-2 fuzzification","authors":"Hossein Monirvaghefi, M. A. Shoorehdeli","doi":"10.1109/ICCIAUTOM.2013.6912840","DOIUrl":null,"url":null,"abstract":"In this study interval type-2 fuzzy systems with non-singleton type-2 fuzzifire are used for identification and modeling nonlinear systems having noise with changing domain for fault detection purpose. The main idea in this fault detection method is to serve an upper bound and a lower bound as a confidence bound for system output that obtained from the interval type-2 fuzzy system. If we haven't precise information about mean and variance of noise, then non-singleton type-2 fuzzifire is usable. This fuzzifire improves performance of fault detection confidence bound. In the end of this paper a well-known benchmark two-tank system has been used for representing the advantages of proposed fault detection method.","PeriodicalId":444883,"journal":{"name":"The 3rd International Conference on Control, Instrumentation, and Automation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Conference on Control, Instrumentation, and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2013.6912840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study interval type-2 fuzzy systems with non-singleton type-2 fuzzifire are used for identification and modeling nonlinear systems having noise with changing domain for fault detection purpose. The main idea in this fault detection method is to serve an upper bound and a lower bound as a confidence bound for system output that obtained from the interval type-2 fuzzy system. If we haven't precise information about mean and variance of noise, then non-singleton type-2 fuzzifire is usable. This fuzzifire improves performance of fault detection confidence bound. In the end of this paper a well-known benchmark two-tank system has been used for representing the advantages of proposed fault detection method.
非单例2型模糊化区间2型模糊系统非线性系统基于模型的故障检测
本文利用非单态区间2型模糊系统对具有变域噪声的非线性系统进行辨识和建模,以达到故障检测的目的。该故障检测方法的主要思想是对区间2型模糊系统的输出给出一个上界和一个下界作为置信界。如果我们没有关于噪声均值和方差的精确信息,那么非单态2型模糊法是可用的。这种模糊方法提高了故障检测置信区间的性能。本文最后以一个著名的双罐系统为例,说明了所提出的故障检测方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信