Towards Portable Realizations of Winograd-based Convolution with Vector Intrinsics and OpenMP

M. F. Dolz, Adrián Castelló, E. S. Quintana‐Ortí
{"title":"Towards Portable Realizations of Winograd-based Convolution with Vector Intrinsics and OpenMP","authors":"M. F. Dolz, Adrián Castelló, E. S. Quintana‐Ortí","doi":"10.1109/pdp55904.2022.00015","DOIUrl":null,"url":null,"abstract":"We take a step forward in the direction of developing high performance codes for the convolution, based on the Winograd transformation, that are easy to customize for different processor architectures. In our approach, augmenting the portability of the solution is achieved via the introduction of vector intrinsics to exploit the SIMD (single-instruction multiple-data) capabilities of current processors as well as OpenMP pragmas to exploit multi-thread parallelism. While this comes at the cost of sacrificing a fraction of the computational performance, our experimental results on two distinct processors, with Intel Xeon Skylake and ARM Cortex A57 architectures, show that the impact is affordable, and still renders a Winograd-based solution that is competitive with the general method for the convolution based on the so-called im2col transform followed by a matrix-matrix multiplication.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We take a step forward in the direction of developing high performance codes for the convolution, based on the Winograd transformation, that are easy to customize for different processor architectures. In our approach, augmenting the portability of the solution is achieved via the introduction of vector intrinsics to exploit the SIMD (single-instruction multiple-data) capabilities of current processors as well as OpenMP pragmas to exploit multi-thread parallelism. While this comes at the cost of sacrificing a fraction of the computational performance, our experimental results on two distinct processors, with Intel Xeon Skylake and ARM Cortex A57 architectures, show that the impact is affordable, and still renders a Winograd-based solution that is competitive with the general method for the convolution based on the so-called im2col transform followed by a matrix-matrix multiplication.
用矢量特性和OpenMP实现基于winograd的可移植卷积
我们在开发基于Winograd变换的高性能卷积代码的方向上迈出了一步,这些代码很容易针对不同的处理器架构进行定制。在我们的方法中,通过引入矢量特性来利用当前处理器的SIMD(单指令多数据)功能以及OpenMP pragmas来利用多线程并行性,从而增强了解决方案的可移植性。虽然这是以牺牲一小部分计算性能为代价的,但我们在两个不同的处理器上(Intel Xeon Skylake和ARM Cortex A57架构)的实验结果表明,这种影响是可以承受的,并且仍然呈现出基于winograd的解决方案,与基于所谓的im2col变换和矩阵-矩阵乘法的卷积的一般方法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信