{"title":"Performance Investigation of Powder Mixed Electro Discharge Machining of Hypoeutectic Al-Si Alloy Using Brass Electrode","authors":"B. Jadhav, M. Sohani, S. Shirguppikar","doi":"10.4018/IJMFMP.2019070103","DOIUrl":null,"url":null,"abstract":"The aim of this study is the multi- objective optimization of process parameters of Al- Si alloy in powder mixed electrical discharge machining for obtaining minimum surface roughness, minimum tool wear rate, and maximum material removal rate. The important machining parameters were selected as discharge current, voltage and pulse-on time. Experiments were conducted by selecting different operating levels for the three parameters according to Taguchi's Design of Experiments. The multi-objective optimization was performed using Grey Relation Analysis to determine the optimal solution. The Grey Relation Grade values were then analysed using analysis of variance to determine the most contributing input parameter. On analysis it was found that peak current, pulse-on time, and voltage had an influence of 94.73%, 3.32% and 0.36%, respectively, on the multi-performance characteristics.","PeriodicalId":417271,"journal":{"name":"International Journal of Materials Forming and Machining Processes","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Forming and Machining Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMFMP.2019070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this study is the multi- objective optimization of process parameters of Al- Si alloy in powder mixed electrical discharge machining for obtaining minimum surface roughness, minimum tool wear rate, and maximum material removal rate. The important machining parameters were selected as discharge current, voltage and pulse-on time. Experiments were conducted by selecting different operating levels for the three parameters according to Taguchi's Design of Experiments. The multi-objective optimization was performed using Grey Relation Analysis to determine the optimal solution. The Grey Relation Grade values were then analysed using analysis of variance to determine the most contributing input parameter. On analysis it was found that peak current, pulse-on time, and voltage had an influence of 94.73%, 3.32% and 0.36%, respectively, on the multi-performance characteristics.