Brain-Computer Interface using Directional Auditory Perception

Yuto Koike, Yuichi Hiroi, Yuta Itoh, J. Rekimoto
{"title":"Brain-Computer Interface using Directional Auditory Perception","authors":"Yuto Koike, Yuichi Hiroi, Yuta Itoh, J. Rekimoto","doi":"10.1145/3582700.3583713","DOIUrl":null,"url":null,"abstract":"We investigate the potential of brain-computer interface (BCI) using electroencephalogram (EEG) induced by listening (or recalling) auditory stimuli of different directions. In the initial attempt, we apply a time series classification model based on deep learning to the EEG to demonstrate whether each EEG can be classified by recognizing binary (left or right) auditory directions. The results showed high classification accuracy when trained and tested on the same users. Discussion is provided to further explore this topic.","PeriodicalId":115371,"journal":{"name":"Proceedings of the Augmented Humans International Conference 2023","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Augmented Humans International Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582700.3583713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the potential of brain-computer interface (BCI) using electroencephalogram (EEG) induced by listening (or recalling) auditory stimuli of different directions. In the initial attempt, we apply a time series classification model based on deep learning to the EEG to demonstrate whether each EEG can be classified by recognizing binary (left or right) auditory directions. The results showed high classification accuracy when trained and tested on the same users. Discussion is provided to further explore this topic.
利用定向听觉感知的脑机接口
利用不同方向听觉刺激诱导的脑电图(EEG)研究脑机接口(BCI)电位。在最初的尝试中,我们将基于深度学习的时间序列分类模型应用于脑电图,以验证是否可以通过识别二元(左或右)听觉方向来对每个脑电图进行分类。在对同一用户进行训练和测试时,结果显示出较高的分类准确率。本文提供了进一步探讨这一主题的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信