Semantic analysis of mobile eyetracking data

PETMEI '11 Pub Date : 2011-09-18 DOI:10.1145/2029956.2029958
J. Pelz
{"title":"Semantic analysis of mobile eyetracking data","authors":"J. Pelz","doi":"10.1145/2029956.2029958","DOIUrl":null,"url":null,"abstract":"Researchers using laboratory-based eyetracking systems now have access to sophisticated data-analysis tools to reduce raw gaze data, but the huge data sets coming from wearable eyetrackers cannot be analyzed with the same tools. The lack of constraints that make mobile systems such powerful tools prevent the analysis tools designed for static or tracked observers from working with freely moving observers.\n Proposed solutions have included infrared markers hidden in the scene to provide reference points, Simultaneous Localization and Mapping (SLAM), and multi-view geometry techniques that build models from multiple views of a scene. These methods map fixations onto predefined or extracted 3D scene models, allowing traditional static-scene analysis tools to be used.\n Another approach to analysis of mobile eyetracking data is to code fixations with semantically meaningful labels rather than mapping the fixations to fixed 3D locations. This offers two important advantages over the model-based methods; semantic mapping allows coding of dynamic scenes without the need to explicitly track objects, and it provides an inherently flexible and extensible object-based coding scheme.","PeriodicalId":405392,"journal":{"name":"PETMEI '11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PETMEI '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2029956.2029958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Researchers using laboratory-based eyetracking systems now have access to sophisticated data-analysis tools to reduce raw gaze data, but the huge data sets coming from wearable eyetrackers cannot be analyzed with the same tools. The lack of constraints that make mobile systems such powerful tools prevent the analysis tools designed for static or tracked observers from working with freely moving observers. Proposed solutions have included infrared markers hidden in the scene to provide reference points, Simultaneous Localization and Mapping (SLAM), and multi-view geometry techniques that build models from multiple views of a scene. These methods map fixations onto predefined or extracted 3D scene models, allowing traditional static-scene analysis tools to be used. Another approach to analysis of mobile eyetracking data is to code fixations with semantically meaningful labels rather than mapping the fixations to fixed 3D locations. This offers two important advantages over the model-based methods; semantic mapping allows coding of dynamic scenes without the need to explicitly track objects, and it provides an inherently flexible and extensible object-based coding scheme.
移动眼动数据的语义分析
使用实验室眼动追踪系统的研究人员现在可以使用复杂的数据分析工具来减少原始凝视数据,但来自可穿戴眼动追踪器的大量数据集无法用相同的工具进行分析。缺乏约束使得移动系统成为如此强大的工具,这使得为静态或跟踪观察者设计的分析工具无法与自由移动的观察者一起工作。提出的解决方案包括隐藏在场景中的红外标记以提供参考点,同时定位和映射(SLAM),以及从场景的多个视图构建模型的多视图几何技术。这些方法将固定映射到预定义或提取的3D场景模型上,从而允许使用传统的静态场景分析工具。另一种分析移动眼球追踪数据的方法是用语义上有意义的标签对注视进行编码,而不是将注视映射到固定的3D位置。与基于模型的方法相比,这提供了两个重要的优势;语义映射允许在不需要显式跟踪对象的情况下对动态场景进行编码,并且它提供了一种固有的灵活和可扩展的基于对象的编码方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信