{"title":"Weighted singularity-robust inverse with criterion function optimization of redundant mobile manipulators in 3D space with defense applications","authors":"Redwan Alqasemi, R. Dubey","doi":"10.1117/12.777413","DOIUrl":null,"url":null,"abstract":"A 9-DoF mobile robotic manipulator system consisting of a 7-DoF redundant manipulator and a differentially driven 2-DoF mobile non-holonomic platform was mathematically modeled to represent a general redundant mobile manipulator. The control of the 3-degree of redundancy system combines the mobility and manipulation, expands on the conventional control methods and introduces user-specified weights to the singularity-robust (S-R) inverse of the Jacobian. Criterion function weight was added to the weight matrix to optimize the control based on joint limit avoidance. A numerical example to apply and compare several control methods was presented. Singularity and joint limit avoidance along with user-defined motion preference were implemented in simulation. Possible applications in defense were explored.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.777413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A 9-DoF mobile robotic manipulator system consisting of a 7-DoF redundant manipulator and a differentially driven 2-DoF mobile non-holonomic platform was mathematically modeled to represent a general redundant mobile manipulator. The control of the 3-degree of redundancy system combines the mobility and manipulation, expands on the conventional control methods and introduces user-specified weights to the singularity-robust (S-R) inverse of the Jacobian. Criterion function weight was added to the weight matrix to optimize the control based on joint limit avoidance. A numerical example to apply and compare several control methods was presented. Singularity and joint limit avoidance along with user-defined motion preference were implemented in simulation. Possible applications in defense were explored.