FLASH: Video-Embeddable AR Anchors for Live Events

E. Lu, John Miller, Nuno Pereira, Anthony G. Rowe
{"title":"FLASH: Video-Embeddable AR Anchors for Live Events","authors":"E. Lu, John Miller, Nuno Pereira, Anthony G. Rowe","doi":"10.1109/ismar52148.2021.00066","DOIUrl":null,"url":null,"abstract":"Public spaces like concert stadiums and sporting arenas are ideal venues for AR content delivery to crowds of mobile phone users. Unfortunately, these environments tend to be some of the most challenging in terms of lighting and dynamic staging for vision-based relocalization. In this paper, we introduce FLASH1, a system for delivering AR content within challenging lighting environments that uses active tags (i.e., blinking) with detectable features from passive tags (quads) for marking regions of interest and determining pose. This combination allows the tags to be detectable from long distances with significantly less computational overhead per frame, making it possible to embed tags in existing video displays like large jumbotrons. To aid in pose acquisition, we implement a gravity-assisted pose solver that removes the ambiguous solutions that are often encountered when trying to localize using standard passive tags. We show that our technique outperforms similarly sized passive tags in terms of range by 20-30% and is fast enough to run at 30 FPS even within a mobile web browser on a smartphone.","PeriodicalId":395413,"journal":{"name":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismar52148.2021.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Public spaces like concert stadiums and sporting arenas are ideal venues for AR content delivery to crowds of mobile phone users. Unfortunately, these environments tend to be some of the most challenging in terms of lighting and dynamic staging for vision-based relocalization. In this paper, we introduce FLASH1, a system for delivering AR content within challenging lighting environments that uses active tags (i.e., blinking) with detectable features from passive tags (quads) for marking regions of interest and determining pose. This combination allows the tags to be detectable from long distances with significantly less computational overhead per frame, making it possible to embed tags in existing video displays like large jumbotrons. To aid in pose acquisition, we implement a gravity-assisted pose solver that removes the ambiguous solutions that are often encountered when trying to localize using standard passive tags. We show that our technique outperforms similarly sized passive tags in terms of range by 20-30% and is fast enough to run at 30 FPS even within a mobile web browser on a smartphone.
FLASH:视频嵌入AR主播直播事件
像音乐会场馆和运动场这样的公共场所是向手机用户提供AR内容的理想场所。不幸的是,这些环境往往是最具挑战性的照明和基于视觉的重新定位的动态舞台。在本文中,我们介绍了FLASH1,这是一个在具有挑战性的照明环境中提供AR内容的系统,它使用主动标签(即眨眼)和被动标签(四轴)的可检测特征来标记感兴趣的区域并确定姿势。这种组合使得标签可以从很远的距离检测到,每帧的计算开销大大减少,从而可以将标签嵌入到现有的视频显示器中,如大型大屏幕。为了帮助姿态获取,我们实现了一个重力辅助姿态求解器,它消除了在使用标准被动标签进行定位时经常遇到的模棱两可的解决方案。我们表明,我们的技术在范围方面比同样大小的被动标签要好20-30%,并且即使在智能手机的移动web浏览器中也足以以30 FPS的速度运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信