An Improved Face Recognition Method Based on Gabor Wavelet Transform and SVM

Zaiying Liu, Lixiao Zhang, Linlin Zhu
{"title":"An Improved Face Recognition Method Based on Gabor Wavelet Transform and SVM","authors":"Zaiying Liu, Lixiao Zhang, Linlin Zhu","doi":"10.1109/ISCID.2012.101","DOIUrl":null,"url":null,"abstract":"This paper proposed an improved face recognition method based on Gabor wavelet transform and SVM. Firstly, the approach utilizes discrete Gabor wavelet transform to face images. then the dimensions of Gabor feature vectors are reduced and transform feature base can be got by using the improved Fisher face method proposed in this paper. by projecting the face image onto the base, the transform coefficient used to be the input of classifier can be got. Finally face image can be classified using a SVM with error correction. Experiment results show that the method of this paper is robust and effective.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposed an improved face recognition method based on Gabor wavelet transform and SVM. Firstly, the approach utilizes discrete Gabor wavelet transform to face images. then the dimensions of Gabor feature vectors are reduced and transform feature base can be got by using the improved Fisher face method proposed in this paper. by projecting the face image onto the base, the transform coefficient used to be the input of classifier can be got. Finally face image can be classified using a SVM with error correction. Experiment results show that the method of this paper is robust and effective.
基于Gabor小波变换和支持向量机的人脸识别改进方法
提出了一种基于Gabor小波变换和支持向量机的改进人脸识别方法。该方法首先利用离散Gabor小波变换对人脸图像进行处理。然后利用本文提出的改进Fisher人脸法对Gabor特征向量进行降维,得到变换特征库。通过将人脸图像投影到基库上,得到作为分类器输入的变换系数。最后利用带误差校正的支持向量机对人脸图像进行分类。实验结果表明,该方法具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信