Applying Embedding Methods to Process Mining

Aleksei Pismerov, M. Pikalov
{"title":"Applying Embedding Methods to Process Mining","authors":"Aleksei Pismerov, M. Pikalov","doi":"10.1145/3579654.3579730","DOIUrl":null,"url":null,"abstract":"The performance of process mining algorithms on a particular event log highly depends on the number of different processes present in the logs. Prior event log clustering can help find out which processes certain events in the logs belong to. Since log clustering is not always a simple task, a preliminary transition from logs to log embeddings can be an important step in solving process mining problems. In this paper, we apply different embedding methods to a dataset of event logs. By transitioning to log embeddings and applying clustering methods we improve the efficiency of process mining. The experiment results suggest that embeddings capturing events order perform better than others.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of process mining algorithms on a particular event log highly depends on the number of different processes present in the logs. Prior event log clustering can help find out which processes certain events in the logs belong to. Since log clustering is not always a simple task, a preliminary transition from logs to log embeddings can be an important step in solving process mining problems. In this paper, we apply different embedding methods to a dataset of event logs. By transitioning to log embeddings and applying clustering methods we improve the efficiency of process mining. The experiment results suggest that embeddings capturing events order perform better than others.
嵌入方法在过程挖掘中的应用
过程挖掘算法在特定事件日志上的性能高度依赖于日志中存在的不同进程的数量。先验事件日志聚类可以帮助找出日志中的某些事件属于哪个进程。由于日志聚类并不总是一项简单的任务,因此从日志到日志嵌入的初步过渡可能是解决过程挖掘问题的重要步骤。在本文中,我们对事件日志数据集应用了不同的嵌入方法。通过过渡到日志嵌入和应用聚类方法,提高了过程挖掘的效率。实验结果表明,捕获事件顺序的嵌入比其他嵌入效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信