Local Linear Quantile Regression for Time Series Under Near Epoch Dependence

Xiaohang Ren, Zudi Lu
{"title":"Local Linear Quantile Regression for Time Series Under Near Epoch Dependence","authors":"Xiaohang Ren, Zudi Lu","doi":"10.2139/ssrn.3555740","DOIUrl":null,"url":null,"abstract":"This paper aims to establish asymptotic normality of the local linear kernel estimator for quantile regression under near epoch dependence, a useful concept in characterising time series dependence of extensive interests in Econometrics. In particular, near epoch dependence can cover a wide range of linear or nonlinear time series models that are even not of strong or $\\alpha$-mixing property (a property usually assumed in the nonlinear time series literature). Under the mild conditions, the Bahadur representation of the quantile regression estimators is established in weak convergence sense. The method provides much richer information than mean regression and covers much more processes, which do not satisfy general mixing conditions. Simulation and application to a real data set are studied, which demonstrate the usefulness of the introduced method for analysis of time series. The theoretical results of this paper will be of widely potential interest for time series econometric semiparametric quantile regression modelling.","PeriodicalId":264857,"journal":{"name":"ERN: Semiparametric & Nonparametric Methods (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Semiparametric & Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3555740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims to establish asymptotic normality of the local linear kernel estimator for quantile regression under near epoch dependence, a useful concept in characterising time series dependence of extensive interests in Econometrics. In particular, near epoch dependence can cover a wide range of linear or nonlinear time series models that are even not of strong or $\alpha$-mixing property (a property usually assumed in the nonlinear time series literature). Under the mild conditions, the Bahadur representation of the quantile regression estimators is established in weak convergence sense. The method provides much richer information than mean regression and covers much more processes, which do not satisfy general mixing conditions. Simulation and application to a real data set are studied, which demonstrate the usefulness of the introduced method for analysis of time series. The theoretical results of this paper will be of widely potential interest for time series econometric semiparametric quantile regression modelling.
近历元相关时间序列的局部线性分位数回归
本文旨在建立近历元相关的分位数回归的局部线性核估计量的渐近正态性,这是计量经济学中广泛关注的表征时间序列相关性的一个有用概念。特别是,近历元依赖性可以涵盖范围广泛的线性或非线性时间序列模型,甚至不具有强或$\alpha$混合性质(非线性时间序列文献中通常假设的性质)。在温和条件下,在弱收敛意义下建立了分位数回归估计量的Bahadur表示。该方法提供了比均值回归更丰富的信息,涵盖了更多不满足一般混合条件的过程。通过对实际数据集的仿真和应用,验证了该方法对时间序列分析的有效性。本文的理论结果将对时间序列计量半参数分位数回归建模具有广泛的潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信