A comparative study of Zernike moments

T. Lin, Yun-Feng Chou
{"title":"A comparative study of Zernike moments","authors":"T. Lin, Yun-Feng Chou","doi":"10.1109/WI.2003.1241255","DOIUrl":null,"url":null,"abstract":"Effective image retrieval by content requires that visual image properties are used instead of textual labels to properly index pictorial data. Shape is one of the primary low-level image features. Many shape representations had been proposed. The Zernike moment descriptor is the most suitable for shape similar-based retrieval in terms of computation complexity, compact representation, robustness, and retrieval performance. We study the first 36 Zernike moments and find the dependence relations between them. A new compact representation is proposed to replace the old one. It is not only saving storage capacity but also reducing the execution time of index generation.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Effective image retrieval by content requires that visual image properties are used instead of textual labels to properly index pictorial data. Shape is one of the primary low-level image features. Many shape representations had been proposed. The Zernike moment descriptor is the most suitable for shape similar-based retrieval in terms of computation complexity, compact representation, robustness, and retrieval performance. We study the first 36 Zernike moments and find the dependence relations between them. A new compact representation is proposed to replace the old one. It is not only saving storage capacity but also reducing the execution time of index generation.
泽尼克矩的比较研究
有效的基于内容的图像检索要求使用视觉图像属性而不是文本标签来正确地索引图像数据。形状是图像的主要底层特征之一。人们提出了许多形状表示。Zernike矩描述子在计算复杂度、表示紧凑性、鲁棒性和检索性能等方面最适合于基于形状相似的检索。我们研究了前36个泽尼克矩,找到了它们之间的依赖关系。提出了一种新的紧凑表示来取代旧的紧凑表示。它不仅节省了存储容量,而且减少了索引生成的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信