{"title":"Enabling Query of Frequently Updated Data from Mobile Sensing Sources","authors":"Yuchao Zhou, Suparna De, Wei Wang, K. Moessner","doi":"10.1109/CSE.2014.190","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) paradigm connects everyday objects to the Internet and enables a multitude of applications with the real world data collected from those objects. In the city environment, real world data sources include fixed installations of sensor networks by city authorities as well as mobile sources, such as citizens' smartphones, taxis and buses equipped with sensors. This kind of data varies not only along the temporal but also the spatial axis. For handling such frequently updated, time-stamped and structured data from a large number of heterogeneous sources, this paper presents a data-centric framework that offers a structured substrate for abstracting heterogeneous sensing sources. More importantly, it enables the collection, storage and discovery of observation and measurement data from both static and mobile sensing sources.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The Internet of Things (IoT) paradigm connects everyday objects to the Internet and enables a multitude of applications with the real world data collected from those objects. In the city environment, real world data sources include fixed installations of sensor networks by city authorities as well as mobile sources, such as citizens' smartphones, taxis and buses equipped with sensors. This kind of data varies not only along the temporal but also the spatial axis. For handling such frequently updated, time-stamped and structured data from a large number of heterogeneous sources, this paper presents a data-centric framework that offers a structured substrate for abstracting heterogeneous sensing sources. More importantly, it enables the collection, storage and discovery of observation and measurement data from both static and mobile sensing sources.