IT Outsourcing and Firm Productivity: Eliminating Bias from Selective Missingness in the Dependent Variable

C. Breunig, Michael E. Kummer, J. Ohnemus, Steffen Viete
{"title":"IT Outsourcing and Firm Productivity: Eliminating Bias from Selective Missingness in the Dependent Variable","authors":"C. Breunig, Michael E. Kummer, J. Ohnemus, Steffen Viete","doi":"10.2139/ssrn.2896759","DOIUrl":null,"url":null,"abstract":"Missing values are a major problem in all econometric applications based on survey data. A standard approach assumes data are missing-at-random and uses imputation methods, or even listwise deletion. This approach is justified if item non-response does not depend on the potentially missing variables’ realization. However, assuming missing-at-random may introduce bias if non-response is, in fact, selective. Relevant applications range from financial or strategic firm-level data to individual-level data on income or privacy-sensitive behaviors. \nIn this paper, we propose a novel approach to deal with selective item nonresponse in the model’s dependent variable. Our approach is based on instrumental variables that affect selection only through potential outcomes. In addition, we allow for endogenous regressors. We establish identification of the structural parameter and propose a simple two-step estimation procedure for it. Our estimator is consistent and robust against biases that would prevail when assuming missingness at random. We implement the estimation procedure using firm-level survey data and a binary instrumental variable to estimate the effect of outsourcing on productivity.","PeriodicalId":448105,"journal":{"name":"ERN: Productivity (Topic)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Productivity (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2896759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Missing values are a major problem in all econometric applications based on survey data. A standard approach assumes data are missing-at-random and uses imputation methods, or even listwise deletion. This approach is justified if item non-response does not depend on the potentially missing variables’ realization. However, assuming missing-at-random may introduce bias if non-response is, in fact, selective. Relevant applications range from financial or strategic firm-level data to individual-level data on income or privacy-sensitive behaviors. In this paper, we propose a novel approach to deal with selective item nonresponse in the model’s dependent variable. Our approach is based on instrumental variables that affect selection only through potential outcomes. In addition, we allow for endogenous regressors. We establish identification of the structural parameter and propose a simple two-step estimation procedure for it. Our estimator is consistent and robust against biases that would prevail when assuming missingness at random. We implement the estimation procedure using firm-level survey data and a binary instrumental variable to estimate the effect of outsourcing on productivity.
IT外包与企业生产率:因变量的选择性缺失消除偏差
在所有基于调查数据的计量经济学应用中,缺失值是一个主要问题。标准方法假定数据是随机丢失的,并使用插入方法,甚至按列表删除。如果项目无响应不依赖于潜在缺失变量的实现,则这种方法是合理的。然而,如果无反应实际上是选择性的,那么假设随机缺失可能会引入偏见。相关的应用范围从财务或战略层面的公司数据到个人层面的收入或隐私敏感行为数据。本文提出了一种处理模型因变量中选择性项目不响应的新方法。我们的方法是基于工具变量,这些变量只通过潜在的结果影响选择。此外,我们考虑了内生回归量。我们建立了结构参数的辨识方法,并提出了一种简单的两步估计方法。我们的估计器是一致的,健壮的,可以抵抗在随机假设缺失时普遍存在的偏见。我们使用公司层面的调查数据和一个二元工具变量来估计外包对生产率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信