A novel orthogonal matching pursuit algorithm based on reduced-dimension dictionary for airborne MIMO radar

Qiuyue Yin, Jinwang Yi, Jun Tang, Qin Zhu
{"title":"A novel orthogonal matching pursuit algorithm based on reduced-dimension dictionary for airborne MIMO radar","authors":"Qiuyue Yin, Jinwang Yi, Jun Tang, Qin Zhu","doi":"10.1109/ISCEIC53685.2021.00049","DOIUrl":null,"url":null,"abstract":"In traditional airborne multiple-input multiple-output (MIMO) radar, high correlation of dictionary atoms usually degrades the performance of orthogonal matching pursuit (OMP) algorithm in sparse recovery space-time adaptive processing (SR-STAP). An OMP algorithm based on reduced-dimension dictionary is developed to solve this problem. It divides the dictionary along the clutter ridge and vertical direction of ridge, and eliminates atoms with high correlation by the prior knowledge. The experimental results indicate that the proposed method fully covers the clutter ridge, thus, the performance of clutter spectrum and signal-to-interference-plus-noise-ratio (SINR) are improved under these limitations of high correlation.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In traditional airborne multiple-input multiple-output (MIMO) radar, high correlation of dictionary atoms usually degrades the performance of orthogonal matching pursuit (OMP) algorithm in sparse recovery space-time adaptive processing (SR-STAP). An OMP algorithm based on reduced-dimension dictionary is developed to solve this problem. It divides the dictionary along the clutter ridge and vertical direction of ridge, and eliminates atoms with high correlation by the prior knowledge. The experimental results indicate that the proposed method fully covers the clutter ridge, thus, the performance of clutter spectrum and signal-to-interference-plus-noise-ratio (SINR) are improved under these limitations of high correlation.
一种基于降维字典的机载MIMO雷达正交匹配跟踪算法
传统机载多输入多输出(MIMO)雷达在稀疏恢复空时自适应处理(SR-STAP)中,字典原子的高相关性往往会降低正交匹配追踪(OMP)算法的性能。为了解决这一问题,提出了一种基于降维字典的OMP算法。它沿杂波脊和杂波脊垂直方向划分字典,并利用先验知识剔除相关性高的原子。实验结果表明,该方法完全覆盖了杂波脊,在高相关性的限制下提高了杂波谱性能和信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信