David Jurgens, Agrima Seth, Jack E. Sargent, Athena Aghighi, Michael Geraci
{"title":"Your spouse needs professional help: Determining the Contextual Appropriateness of Messages through Modeling Social Relationships","authors":"David Jurgens, Agrima Seth, Jack E. Sargent, Athena Aghighi, Michael Geraci","doi":"10.48550/arXiv.2307.02763","DOIUrl":null,"url":null,"abstract":"Understanding interpersonal communication requires, in part, understanding the social context and norms in which a message is said. However, current methods for identifying offensive content in such communication largely operate independent of context, with only a few approaches considering community norms or prior conversation as context. Here, we introduce a new approach to identifying inappropriate communication by explicitly modeling the social relationship between the individuals. We introduce a new dataset of contextually-situated judgments of appropriateness and show that large language models can readily incorporate relationship information to accurately identify appropriateness in a given context. Using data from online conversations and movie dialogues, we provide insight into how the relationships themselves function as implicit norms and quantify the degree to which context-sensitivity is needed in different conversation settings. Further, we also demonstrate that contextual-appropriateness judgments are predictive of other social factors expressed in language such as condescension and politeness.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.02763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding interpersonal communication requires, in part, understanding the social context and norms in which a message is said. However, current methods for identifying offensive content in such communication largely operate independent of context, with only a few approaches considering community norms or prior conversation as context. Here, we introduce a new approach to identifying inappropriate communication by explicitly modeling the social relationship between the individuals. We introduce a new dataset of contextually-situated judgments of appropriateness and show that large language models can readily incorporate relationship information to accurately identify appropriateness in a given context. Using data from online conversations and movie dialogues, we provide insight into how the relationships themselves function as implicit norms and quantify the degree to which context-sensitivity is needed in different conversation settings. Further, we also demonstrate that contextual-appropriateness judgments are predictive of other social factors expressed in language such as condescension and politeness.