Minimal generalized solutions of fuzzy polynomial equations

M. Chehlabi
{"title":"Minimal generalized solutions of fuzzy polynomial equations","authors":"M. Chehlabi","doi":"10.5899/2015/JFSVA-00236","DOIUrl":null,"url":null,"abstract":"Fuzzy polynomial equations ($FPEs$) don't have algebraic solutions, generally. In this paper, we first, express and prove some relationships between Husdroof meter and length function on classes of triangular fuzzy numbers. We appraise the behavior of fuzzy polynomials by using the length function properties. Next, we transform a $FPE$ into a generalized fuzzy polynomial equation ($GFPE$) and introduce generalized solutions and minimal generalized solutions concepts of $FPEs$. Finding minimal generalized solutions are discussed theoretically, in details. Finally, some numerical examples are given, illustrating our results.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2015/JFSVA-00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy polynomial equations ($FPEs$) don't have algebraic solutions, generally. In this paper, we first, express and prove some relationships between Husdroof meter and length function on classes of triangular fuzzy numbers. We appraise the behavior of fuzzy polynomials by using the length function properties. Next, we transform a $FPE$ into a generalized fuzzy polynomial equation ($GFPE$) and introduce generalized solutions and minimal generalized solutions concepts of $FPEs$. Finding minimal generalized solutions are discussed theoretically, in details. Finally, some numerical examples are given, illustrating our results.
模糊多项式方程的极小广义解
一般来说,模糊多项式方程(FPEs)没有代数解。本文首先给出并证明了一类三角模糊数上的Husdroof米与长度函数之间的关系。我们利用长度函数的性质来评价模糊多项式的性质。然后,我们将$FPE$转化为广义模糊多项式方程($GFPE$),并引入$FPE$的广义解和最小广义解的概念。从理论上详细讨论了求最小广义解的问题。最后给出了数值算例,说明了本文的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信