{"title":"Demo: In-Vessel Molecular MIMO Communications","authors":"Changmin Lee, Bonhong Koo, C. Chae","doi":"10.1109/WCNCW48565.2020.9124905","DOIUrl":null,"url":null,"abstract":"In this paper, we propose in-vessel molecular multiple-input multiple-out (MIMO) communications to overcome the slow transmission rate of conventional molecular communications. Although the flow-assist channel model for MIMO systems has not been well investigated, we show the feasibility of MIMO systems and verify the system through a prototype. In the platform, an acid and a base are utilized to send information by changing the pH value. The testbed shows a higher data rate than single-input single-output (SISO) systems.","PeriodicalId":443582,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW48565.2020.9124905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we propose in-vessel molecular multiple-input multiple-out (MIMO) communications to overcome the slow transmission rate of conventional molecular communications. Although the flow-assist channel model for MIMO systems has not been well investigated, we show the feasibility of MIMO systems and verify the system through a prototype. In the platform, an acid and a base are utilized to send information by changing the pH value. The testbed shows a higher data rate than single-input single-output (SISO) systems.