Detecting negativity in user comments using emotional maps and convolutional neural networks

Elena Manishina, Dylan Tweed, Guillaume Tiberi, Lorena Gayarre Pena, Nicolas Martin
{"title":"Detecting negativity in user comments using emotional maps and convolutional neural networks","authors":"Elena Manishina, Dylan Tweed, Guillaume Tiberi, Lorena Gayarre Pena, Nicolas Martin","doi":"10.1109/ACIIW.2019.8925167","DOIUrl":null,"url":null,"abstract":"In this paper we present a new approach to negativity detection in online user comments - an emotional image model. This model mimics image processing paradigm, where a comment is represented as a sentiment map retracing the sequence and proportions of various emotions in the text extract. We use 1D convolutional neural networks (CNN) to process 1D multichannel emotional maps which represent the emotional/sentiment image of a comment. The results show that our approach is capable of modeling and processing complex emotional patterns and detecting specific sentiments within the text image (negativity in our case) in a way similar to a classical CNN in object detection/image classification tasks.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a new approach to negativity detection in online user comments - an emotional image model. This model mimics image processing paradigm, where a comment is represented as a sentiment map retracing the sequence and proportions of various emotions in the text extract. We use 1D convolutional neural networks (CNN) to process 1D multichannel emotional maps which represent the emotional/sentiment image of a comment. The results show that our approach is capable of modeling and processing complex emotional patterns and detecting specific sentiments within the text image (negativity in our case) in a way similar to a classical CNN in object detection/image classification tasks.
使用情感地图和卷积神经网络检测用户评论中的消极性
本文提出了一种新的在线用户评论消极性检测方法——情感图像模型。该模型模仿图像处理范例,其中评论表示为情感地图,追溯文本摘录中各种情绪的顺序和比例。我们使用一维卷积神经网络(CNN)来处理一维多通道情感图,这些情感图代表了评论的情感/情绪图像。结果表明,我们的方法能够建模和处理复杂的情感模式,并以类似于经典CNN在对象检测/图像分类任务中的方式检测文本图像中的特定情感(在我们的例子中是消极的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信