{"title":"Soft real-time traffic communication in loaded Wireless Mesh Networks","authors":"J. Aísa, H. Fotouhi, J. L. Villarroel, L. Almeida","doi":"10.1109/WFCS.2016.7496503","DOIUrl":null,"url":null,"abstract":"Industrial applications have been shifting towards wireless multi-hop networks in recent years due to their lower cost of deployment and reconfiguration compared with their wired counterparts. These wireless networks usually must support real-time communication to meet the application requirements. For this reason, Wireless Mesh Networks (WMNs) are potential candidates for industrial applications as they support a fixed infrastructure of static nodes for relaying packets. To meet the application demands, we modify the wireless chain network protocol (WICKPro) to support soft real-time traffic in WMNs with chain topologies over IEEE 802.11. We employ tele-operation of mobile robots as our case study, and perform extensive simulation and laboratory experiments. We show that the data delivery ratio is increased up to 42% in a scenario with 7 nodes, when the maximum end-to-end delay tolerated by the application is doubled. This is particularly suited to soft real-time applications that can trade longer delays by higher reliability. Moreover, when compared with a distributed priority-based token-passing protocol (RT-WMP), the lower overhead of WICKPro allows, in an error-free scenario, obtaining a throughput improvement of 33.42% on average.","PeriodicalId":413770,"journal":{"name":"2016 IEEE World Conference on Factory Communication Systems (WFCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE World Conference on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2016.7496503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Industrial applications have been shifting towards wireless multi-hop networks in recent years due to their lower cost of deployment and reconfiguration compared with their wired counterparts. These wireless networks usually must support real-time communication to meet the application requirements. For this reason, Wireless Mesh Networks (WMNs) are potential candidates for industrial applications as they support a fixed infrastructure of static nodes for relaying packets. To meet the application demands, we modify the wireless chain network protocol (WICKPro) to support soft real-time traffic in WMNs with chain topologies over IEEE 802.11. We employ tele-operation of mobile robots as our case study, and perform extensive simulation and laboratory experiments. We show that the data delivery ratio is increased up to 42% in a scenario with 7 nodes, when the maximum end-to-end delay tolerated by the application is doubled. This is particularly suited to soft real-time applications that can trade longer delays by higher reliability. Moreover, when compared with a distributed priority-based token-passing protocol (RT-WMP), the lower overhead of WICKPro allows, in an error-free scenario, obtaining a throughput improvement of 33.42% on average.