Web sites thematic classification using hidden Markov models

Lyonel Serradura, M. Slimane, N. Vincent
{"title":"Web sites thematic classification using hidden Markov models","authors":"Lyonel Serradura, M. Slimane, N. Vincent","doi":"10.1109/ICDAR.2001.953955","DOIUrl":null,"url":null,"abstract":"There is more and more information available on the Internet. We need tools to help us extract the right piece of information. We have developed a classification algorithm tackling this issue in French. It distinguishes web pages classifying their text content into themes. We use Hidden Markov Models (HMM) to build this method named STCoL (Supervised Thematic Corpus Learning). Once themes are modeled with HMMs, STCoL is able to classify documents from different sources. This method is not only efficient but is also robust.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There is more and more information available on the Internet. We need tools to help us extract the right piece of information. We have developed a classification algorithm tackling this issue in French. It distinguishes web pages classifying their text content into themes. We use Hidden Markov Models (HMM) to build this method named STCoL (Supervised Thematic Corpus Learning). Once themes are modeled with HMMs, STCoL is able to classify documents from different sources. This method is not only efficient but is also robust.
使用隐马尔可夫模型的网站主题分类
互联网上有越来越多的信息。我们需要工具来帮助我们提取正确的信息。我们已经开发了一种用法语解决这个问题的分类算法。它区分网页将其文本内容分类为主题。我们使用隐马尔可夫模型(HMM)来构建这种名为STCoL(监督主题语料库学习)的方法。一旦用hmm对主题建模,STCoL就能够对来自不同来源的文档进行分类。该方法不仅效率高,而且鲁棒性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信