A comparative study of convolutional neural networks for mammogram diagnosis

Anongnat Intasam, Y. Promworn, Somchai Thanasitthichai, W. Piyawattanametha
{"title":"A comparative study of convolutional neural networks for mammogram diagnosis","authors":"Anongnat Intasam, Y. Promworn, Somchai Thanasitthichai, W. Piyawattanametha","doi":"10.1109/BMEiCON56653.2022.10012074","DOIUrl":null,"url":null,"abstract":"This work evaluates and compares the architectures: Inceptionv4, InceptionResnetV2, and Resnet152, to classify benign and malignant. We evaluate the architectures with a statistical analysis base on the received operational characteristics (ROC), accuracy, precision, recall, and F1 score. We generate the best results with the CNN InceptionResnetV2 trained with two classes on a balanced mammogram database. The results for benign cases have a ROC of 0.93, a precision of 0.8319, a recall of 0.9216, and an F1-score of 0.8744. The results for malignant cases have a ROC of 0.91, a precision of 0.9121, a recall of 0.8137, and an F1-score of 0.8601.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work evaluates and compares the architectures: Inceptionv4, InceptionResnetV2, and Resnet152, to classify benign and malignant. We evaluate the architectures with a statistical analysis base on the received operational characteristics (ROC), accuracy, precision, recall, and F1 score. We generate the best results with the CNN InceptionResnetV2 trained with two classes on a balanced mammogram database. The results for benign cases have a ROC of 0.93, a precision of 0.8319, a recall of 0.9216, and an F1-score of 0.8744. The results for malignant cases have a ROC of 0.91, a precision of 0.9121, a recall of 0.8137, and an F1-score of 0.8601.
卷积神经网络在乳腺x线影像诊断中的比较研究
这项工作评估并比较了体系结构:Inceptionv4、InceptionResnetV2和Resnet152,以分类良性和恶性。我们基于接收到的操作特征(ROC)、准确性、精密度、召回率和F1分数进行统计分析来评估这些架构。我们在平衡的乳房x线照片数据库上用两个类训练的CNN InceptionResnetV2产生了最好的结果。良性病例的ROC为0.93,准确率为0.8319,召回率为0.9216,f1评分为0.8744。恶性病例的ROC为0.91,准确率为0.9121,召回率为0.8137,f1评分为0.8601。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信