FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges

F. Fomin, P. Golovach, Tanmay Inamdar, Tomohiro Koana
{"title":"FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges","authors":"F. Fomin, P. Golovach, Tanmay Inamdar, Tomohiro Koana","doi":"10.4230/LIPIcs.MFCS.2023.46","DOIUrl":null,"url":null,"abstract":"We study the \\textsc{$\\alpha$-Fixed Cardinality Graph Partitioning ($\\alpha$-FCGP)} problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph $G$, two numbers $k,p$ and $0\\leq\\alpha\\leq 1$, the question is whether there is a set $S\\subseteq V$ of size $k$ with a specified coverage function $cov_{\\alpha}(S)$ at least $p$ (or at most $p$ for the minimization version). The coverage function $cov_{\\alpha}(\\cdot)$ counts edges with exactly one endpoint in $S$ with weight $\\alpha$ and edges with both endpoints in $S$ with weight $1 - \\alpha$. $\\alpha$-FCGP generalizes a number of fundamental graph problems such as \\textsc{Densest $k$-Subgraph}, \\textsc{Max $k$-Vertex Cover}, and \\textsc{Max $(k,n-k)$-Cut}. A natural question in the study of $\\alpha$-FCGP is whether the algorithmic results known for its special cases, like \\textsc{Max $k$-Vertex Cover}, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for \\textsc{Max $k$-Vertex Cover} is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for $\\alpha>0$ and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with $\\alpha>1/3$ and minimization with $\\alpha<1/3$.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2023.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the \textsc{$\alpha$-Fixed Cardinality Graph Partitioning ($\alpha$-FCGP)} problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph $G$, two numbers $k,p$ and $0\leq\alpha\leq 1$, the question is whether there is a set $S\subseteq V$ of size $k$ with a specified coverage function $cov_{\alpha}(S)$ at least $p$ (or at most $p$ for the minimization version). The coverage function $cov_{\alpha}(\cdot)$ counts edges with exactly one endpoint in $S$ with weight $\alpha$ and edges with both endpoints in $S$ with weight $1 - \alpha$. $\alpha$-FCGP generalizes a number of fundamental graph problems such as \textsc{Densest $k$-Subgraph}, \textsc{Max $k$-Vertex Cover}, and \textsc{Max $(k,n-k)$-Cut}. A natural question in the study of $\alpha$-FCGP is whether the algorithmic results known for its special cases, like \textsc{Max $k$-Vertex Cover}, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for \textsc{Max $k$-Vertex Cover} is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for $\alpha>0$ and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with $\alpha>1/3$ and minimization with $\alpha<1/3$.
覆盖少边或多边的FPT逼近和亚指数算法
我们研究 \textsc{$\alpha$-固定基数图划分($\alpha$-fcgp)} 问题,由Bonnet等人[Algorithmica 2015]引入的通用局部图划分问题。在这个问题中,我们给出了一个图 $G$,两个数字 $k,p$ 和 $0\leq\alpha\leq 1$,问题是是否存在一个集合 $S\subseteq V$ 大小 $k$ 具有指定的覆盖功能 $cov_{\alpha}(S)$ 至少 $p$ (或者最多 $p$ 对于最小化版本)。覆盖函数 $cov_{\alpha}(\cdot)$ 计算只有一个端点的边 $S$ 有重量 $\alpha$ 端点都在里面的边 $S$ 有重量 $1 - \alpha$. $\alpha$fcgp推广了一些基本的图问题,如 \textsc{密度最大的 $k$-子图}, \textsc{Max $k$-顶点覆盖},和 \textsc{Max $(k,n-k)$——切}. 研究中的一个自然问题 $\alpha$-FCGP是算法结果是否已知的特殊情况,如 \textsc{Max $k$-顶点覆盖},可以扩展到更一般的情况。获得参数化近似的一种简单但强大的方法[Manurangsi, SOSA 2019]和次指数算法[Fomin等]。IPL 2011] \textsc{Max $k$-顶点覆盖} 是基于贪婪顶点度排序。我们工作的主要见解是贪婪顶点度排序的思想可以用于设计固定参数近似方案(FPT-AS) $\alpha>0$ 并给出了顶次自由图问题的次指数时间算法 $\alpha>1/3$ 最小化 $\alpha<1/3$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信