Classification of power quality events using deep learning on event images

Ebrahim Balouji, O. Salor
{"title":"Classification of power quality events using deep learning on event images","authors":"Ebrahim Balouji, O. Salor","doi":"10.1109/PRIA.2017.7983049","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for the classification of power quality (PQ) events of the electricity networks based on deep learning approach is presented. In contrast with the existing PQ event data analysis techniques, sampled voltage data of the PQ events are not used, but image files of the three-phase PQ event data are analyzed by taking the advantage of the success of the deep leaning approach on image-file-classification. Therefore, the novelty of the proposed approach is that, image files of the voltage waveforms of the three phases of the power grid are classified. PQ events obtained from four transformer substations of the electricity transmission system for a year are used for training and testing the proposed classification method. DIGITS deep learning platform of NVIDIA is employed for the application of the deep learning algorithm on PQ event data images. It is shown that the test data can be classified with 100% accuracy. The proposed work is believed to serve the needs of the future smart grid applications, which are fast and automatic analysis of the electricity grid and taking automatic countermeasures against potential PQ events.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper, a new method for the classification of power quality (PQ) events of the electricity networks based on deep learning approach is presented. In contrast with the existing PQ event data analysis techniques, sampled voltage data of the PQ events are not used, but image files of the three-phase PQ event data are analyzed by taking the advantage of the success of the deep leaning approach on image-file-classification. Therefore, the novelty of the proposed approach is that, image files of the voltage waveforms of the three phases of the power grid are classified. PQ events obtained from four transformer substations of the electricity transmission system for a year are used for training and testing the proposed classification method. DIGITS deep learning platform of NVIDIA is employed for the application of the deep learning algorithm on PQ event data images. It is shown that the test data can be classified with 100% accuracy. The proposed work is believed to serve the needs of the future smart grid applications, which are fast and automatic analysis of the electricity grid and taking automatic countermeasures against potential PQ events.
在事件图像上使用深度学习的电能质量事件分类
提出了一种基于深度学习方法的电网电能质量事件分类新方法。与现有的PQ事件数据分析技术相比,该方法不使用PQ事件的采样电压数据,而是利用深度学习方法在图像文件分类方面的成功,对三相PQ事件数据的图像文件进行分析。因此,该方法的新颖之处在于对电网三相电压波形的图像文件进行分类。利用4个输电系统变电站1年的PQ事件对所提出的分类方法进行了训练和试验。采用NVIDIA的DIGITS深度学习平台,将深度学习算法应用于PQ事件数据图像。结果表明,该方法对测试数据的分类准确率为100%。提出的工作被认为是服务于未来智能电网应用的需求,即快速和自动分析电网并对潜在的PQ事件采取自动对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信