{"title":"Analysis of the Structure and Thermal Stability of Cu@Si Nanoparticles","authors":"Y. Gafner, S. Gafner, A. Nomoev, S. Bardakhanov","doi":"10.4028/www.scientific.net/JMNM.30.52","DOIUrl":null,"url":null,"abstract":"In this research core-shell Cu@Si nanoparticles were obtained through evaporation of elemental precursors by a high-powered electron beam. The structures of the particles were investigated in order to elucidate their mechanisms of formation. The thermal stability of the particles was studied with the help of molecular dynamics calculations. The parameters of the thermal stability of the composite nanoparticles Cu@Si with different size were determined. It was concluded that with the temperature increasing the diffusion of copper atoms on the surface begins, leading to a reversal of the structure and the formation of particles having a particle type Si@Cu.","PeriodicalId":177608,"journal":{"name":"Journal of Metastable and Nanocrystalline Materials","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metastable and Nanocrystalline Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JMNM.30.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this research core-shell Cu@Si nanoparticles were obtained through evaporation of elemental precursors by a high-powered electron beam. The structures of the particles were investigated in order to elucidate their mechanisms of formation. The thermal stability of the particles was studied with the help of molecular dynamics calculations. The parameters of the thermal stability of the composite nanoparticles Cu@Si with different size were determined. It was concluded that with the temperature increasing the diffusion of copper atoms on the surface begins, leading to a reversal of the structure and the formation of particles having a particle type Si@Cu.