MULTIPLE COMPARISON PROCEDURES FOR HIGH-DIMENSIONAL DATA AND THEIR ROBUSTNESS UNDER NON-NORMALITY

Sho Takahashi, Masashi Hyodo, T. Nishiyama, T. Pavlenko
{"title":"MULTIPLE COMPARISON PROCEDURES FOR HIGH-DIMENSIONAL DATA AND THEIR ROBUSTNESS UNDER NON-NORMALITY","authors":"Sho Takahashi, Masashi Hyodo, T. Nishiyama, T. Pavlenko","doi":"10.5183/JJSCS.1211001_202","DOIUrl":null,"url":null,"abstract":"This paper analyzes whether procedures for multiple comparison derived in Hyodo et al. (2012) work for an unbalanced case and under non-normality. We focus on pairwise multiple comparisons and comparison with a control among mean vectors, and show that the asymptotic properties of these procedures remain valid in unbalanced high-dimensional setting. We also numerically justify that the derived procedures are robust under non-normality, i.e., the coverage probability of these procedures can be controlled with or without the assumption of normality of the data.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1211001_202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper analyzes whether procedures for multiple comparison derived in Hyodo et al. (2012) work for an unbalanced case and under non-normality. We focus on pairwise multiple comparisons and comparison with a control among mean vectors, and show that the asymptotic properties of these procedures remain valid in unbalanced high-dimensional setting. We also numerically justify that the derived procedures are robust under non-normality, i.e., the coverage probability of these procedures can be controlled with or without the assumption of normality of the data.
高维数据的多重比较方法及其非正态性下的鲁棒性
本文分析了Hyodo et al.(2012)导出的多重比较程序是否适用于非平衡情况和非正态情况。我们重点研究了两两多重比较和均值向量间的控制比较,并证明了这些过程的渐近性质在不平衡高维环境下仍然有效。我们还在数值上证明了导出的程序在非正态性下是鲁棒的,即,这些程序的覆盖概率可以在假设数据正态性或不假设数据正态性的情况下控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信