On the Bit Complexity of Solving Bilinear Polynomial Systems

I. Emiris, Angelos Mantzaflaris, Elias P. Tsigaridas
{"title":"On the Bit Complexity of Solving Bilinear Polynomial Systems","authors":"I. Emiris, Angelos Mantzaflaris, Elias P. Tsigaridas","doi":"10.1145/2930889.2930919","DOIUrl":null,"url":null,"abstract":"We bound the Boolean complexity of computing isolating hyperboxes for all complex roots of systems of bilinear polynomials. The resultant of such systems admits a family of determinantal Sylvester-type formulas, which we make explicit by means of homological complexes. The computation of the determinant of the resultant matrix is a bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector products, corresponding to multivariate polynomial multiplication. For zero-dimensional systems, we arrive at a primitive element and a rational univariate representation of the roots. The overall bit complexity of our probabilistic algorithm is OB(n4 D4 + n2D4 τ), where n is the number of variables, D equals the bilinear Bezout bound, and τ is the maximum coefficient bitsize. Finally, a careful infinitesimal symbolic perturbation of the system allows us to treat degenerate and positive dimensional systems, thus making our algorithms and complexity analysis applicable to the general case.","PeriodicalId":169557,"journal":{"name":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930889.2930919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We bound the Boolean complexity of computing isolating hyperboxes for all complex roots of systems of bilinear polynomials. The resultant of such systems admits a family of determinantal Sylvester-type formulas, which we make explicit by means of homological complexes. The computation of the determinant of the resultant matrix is a bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector products, corresponding to multivariate polynomial multiplication. For zero-dimensional systems, we arrive at a primitive element and a rational univariate representation of the roots. The overall bit complexity of our probabilistic algorithm is OB(n4 D4 + n2D4 τ), where n is the number of variables, D equals the bilinear Bezout bound, and τ is the maximum coefficient bitsize. Finally, a careful infinitesimal symbolic perturbation of the system allows us to treat degenerate and positive dimensional systems, thus making our algorithms and complexity analysis applicable to the general case.
求解双线性多项式系统的位复杂度
对双线性多项式系统的所有复根计算隔离超盒的布尔复杂度进行了定界。这类系统的结果允许一组行列式sylvester型公式,我们用同调复形来显化这些公式。结果矩阵行列式的计算是整体复杂度的瓶颈。我们利用拟toeplitz结构将问题简化为有效的矩阵向量积,对应于多元多项式乘法。对于零维系统,我们得到了根的原始元素和有理单变量表示。我们的概率算法的总位复杂度为OB(n4 D4 + n2D4 τ),其中n为变量数,D为双线性Bezout界,τ为最大系数位大小。最后,系统的一个微小的符号扰动允许我们处理退化和正维系统,从而使我们的算法和复杂性分析适用于一般情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信