GPU-Accelerated GATK HaplotypeCaller with Load-Balanced Multi-Process Optimization

Shanshan Ren, K. Bertels, Z. Al-Ars
{"title":"GPU-Accelerated GATK HaplotypeCaller with Load-Balanced Multi-Process Optimization","authors":"Shanshan Ren, K. Bertels, Z. Al-Ars","doi":"10.1109/BIBE.2017.000-5","DOIUrl":null,"url":null,"abstract":"Due to its high-throughput and low cost, Next Generation Sequencing (NGS) technology is becoming increasingly popular in many genomics research labs. However, handling the massive raw data generated by the NGS platforms poses a significant computational challenge to genomics analysis tools. This paper presents a GPU acceleration of the GATK HaplotypeCaller (GATK HC), a widely used DNA variant caller in the clinic. Moreover, this paper proposes a load-balanced multi-process optimization of GATK HaplotypeCaller to address its implementation limitation which forces the sequential execution of the program and prevents effective utilization of hardware acceleration. In single-threaded mode, the GPU-based GATK HC is 1.71x and 1.21x faster than the baseline HC implementation and the vectorized GATK HC implementation, respectively. Moreover, the GPU-based implementation achieves up to 2.04x and 1.40x speedup in load-balanced multi-process mode over the baseline implementation and the vectorized GATK HC implementation in non-load-balanced multi-process mode, respectively.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.000-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Due to its high-throughput and low cost, Next Generation Sequencing (NGS) technology is becoming increasingly popular in many genomics research labs. However, handling the massive raw data generated by the NGS platforms poses a significant computational challenge to genomics analysis tools. This paper presents a GPU acceleration of the GATK HaplotypeCaller (GATK HC), a widely used DNA variant caller in the clinic. Moreover, this paper proposes a load-balanced multi-process optimization of GATK HaplotypeCaller to address its implementation limitation which forces the sequential execution of the program and prevents effective utilization of hardware acceleration. In single-threaded mode, the GPU-based GATK HC is 1.71x and 1.21x faster than the baseline HC implementation and the vectorized GATK HC implementation, respectively. Moreover, the GPU-based implementation achieves up to 2.04x and 1.40x speedup in load-balanced multi-process mode over the baseline implementation and the vectorized GATK HC implementation in non-load-balanced multi-process mode, respectively.
gpu加速GATK HaplotypeCaller与负载平衡的多进程优化
由于其高通量和低成本,下一代测序(NGS)技术越来越受到许多基因组学研究实验室的欢迎。然而,处理由NGS平台产生的大量原始数据对基因组学分析工具提出了重大的计算挑战。本文提出了一种应用广泛的DNA变异调用器GATK HaplotypeCaller (GATK HC)的GPU加速算法。此外,本文提出了对GATK HaplotypeCaller进行负载均衡的多进程优化,以解决其强制顺序执行程序和阻碍有效利用硬件加速的实现限制。在单线程模式下,基于gpu的GATK HC分别比基线HC实现和矢量化GATK HC实现快1.71倍和1.21倍。此外,在负载均衡多进程模式下,基于gpu的实现比基线实现和非负载均衡多进程模式下的矢量化GATK HC实现分别实现了2.04倍和1.40倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信