{"title":"On The Difference Sequence Space $l_p(\\hat{T}^q)$","authors":"M. İlkhan, P. Alp","doi":"10.36753/MATHENOT.597703","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new matrix $\\hat{T}^q=(\\hat{t}^q_{nk})$ by \\[ \\hat{t}^q_{nk}=\\left \\{ \\begin{array} [c]{ccl}% \\frac{q_n}{Q_n} t_n & , & k=n\\\\ \\frac{q_k}{Q_n}t_k-\\frac{q_{k+1}}{Q_n} \\frac{1}{t_{k+1}} & , & k n . \\end{array} \\right. \\] where $t_k>0$ for all $n\\in\\mathbb{N}$ and $(t_n)\\in c\\backslash c_0$ . By using the matrix $\\hat{T}^q$ , we introduce the sequence space $\\ell_p(\\hat{T}^q)$ for $1\\leq p\\leq\\infty$ . In addition, we give some theorems on inclusion relations associated with $\\ell_p(\\hat{T}^q)$ and find the $\\alpha$ -, $\\beta$ -, $\\gamma$ - duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\\ell_p(\\hat{T}^q),\\lambda)$ or $(\\lambda,\\ell_p(\\hat{T}^q))$ , where $\\lambda\\in\\{\\ell_1,c_0,c,\\ell_\\infty\\}$ .","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/MATHENOT.597703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this study, we introduce a new matrix $\hat{T}^q=(\hat{t}^q_{nk})$ by \[ \hat{t}^q_{nk}=\left \{ \begin{array} [c]{ccl}% \frac{q_n}{Q_n} t_n & , & k=n\\ \frac{q_k}{Q_n}t_k-\frac{q_{k+1}}{Q_n} \frac{1}{t_{k+1}} & , & k n . \end{array} \right. \] where $t_k>0$ for all $n\in\mathbb{N}$ and $(t_n)\in c\backslash c_0$ . By using the matrix $\hat{T}^q$ , we introduce the sequence space $\ell_p(\hat{T}^q)$ for $1\leq p\leq\infty$ . In addition, we give some theorems on inclusion relations associated with $\ell_p(\hat{T}^q)$ and find the $\alpha$ -, $\beta$ -, $\gamma$ - duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\ell_p(\hat{T}^q),\lambda)$ or $(\lambda,\ell_p(\hat{T}^q))$ , where $\lambda\in\{\ell_1,c_0,c,\ell_\infty\}$ .