On The Difference Sequence Space $l_p(\hat{T}^q)$

M. İlkhan, P. Alp
{"title":"On The Difference Sequence Space $l_p(\\hat{T}^q)$","authors":"M. İlkhan, P. Alp","doi":"10.36753/MATHENOT.597703","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new matrix $\\hat{T}^q=(\\hat{t}^q_{nk})$ by \\[ \\hat{t}^q_{nk}=\\left \\{ \\begin{array} [c]{ccl}% \\frac{q_n}{Q_n} t_n & , & k=n\\\\ \\frac{q_k}{Q_n}t_k-\\frac{q_{k+1}}{Q_n} \\frac{1}{t_{k+1}} & , & k n . \\end{array} \\right. \\] where $t_k>0$ for all $n\\in\\mathbb{N}$ and $(t_n)\\in c\\backslash c_0$ . By using the matrix $\\hat{T}^q$ , we introduce the sequence space $\\ell_p(\\hat{T}^q)$ for $1\\leq p\\leq\\infty$ . In addition, we give some theorems on inclusion relations associated with $\\ell_p(\\hat{T}^q)$ and find the $\\alpha$ -, $\\beta$ -, $\\gamma$ - duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\\ell_p(\\hat{T}^q),\\lambda)$ or $(\\lambda,\\ell_p(\\hat{T}^q))$ , where $\\lambda\\in\\{\\ell_1,c_0,c,\\ell_\\infty\\}$ .","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/MATHENOT.597703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we introduce a new matrix $\hat{T}^q=(\hat{t}^q_{nk})$ by \[ \hat{t}^q_{nk}=\left \{ \begin{array} [c]{ccl}% \frac{q_n}{Q_n} t_n & , & k=n\\ \frac{q_k}{Q_n}t_k-\frac{q_{k+1}}{Q_n} \frac{1}{t_{k+1}} & , & k n . \end{array} \right. \] where $t_k>0$ for all $n\in\mathbb{N}$ and $(t_n)\in c\backslash c_0$ . By using the matrix $\hat{T}^q$ , we introduce the sequence space $\ell_p(\hat{T}^q)$ for $1\leq p\leq\infty$ . In addition, we give some theorems on inclusion relations associated with $\ell_p(\hat{T}^q)$ and find the $\alpha$ -, $\beta$ -, $\gamma$ - duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\ell_p(\hat{T}^q),\lambda)$ or $(\lambda,\ell_p(\hat{T}^q))$ , where $\lambda\in\{\ell_1,c_0,c,\ell_\infty\}$ .
差分序列空间$l_p(\hat{T}^q)$
在这项研究中,我们引入一个新的矩阵$ {T} ^ \帽子q =(\帽子{T} ^ q_ {nk})由美元\[\帽子{T} ^ q_ {nk} = \左\{\开始{数组}[c] ccl{} % \压裂{q_n} {q_n} t_n &、& k = n \ \ \压裂{q_k} {q_n} t_k - \压裂{q_ {k + 1}} {q_n} \压裂{1}{t_ {k + 1}}识别&、& k n。数组{}\ \端。其中$t_k>0$用于所有$n\in\mathbb{n}$和$(t_n)\in c\反斜杠c_0$。通过使用矩阵$\hat{T}^q$,我们引入了$ $1\leq p\leq\ inty $的序列空间$\ell_p(\hat{T}^q)$。此外,我们给出了与$\ell_p(\hat{T}^q)$有关的包含关系的定理,并找到了该空间的$\alpha$ -, $\beta$ -, $\gamma$ -对偶。最后,我们分析了无限矩阵存在于$(\ell_p(\hat{T}^q),\lambda)$或$(\lambda,\ell_p(\hat{T}^q))$的充要条件,其中$\lambda\in\{\ell_1,c_0,c,\ell_\infty\}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信