Faster Subgraph Counting in Sparse Graphs

M. Bressan
{"title":"Faster Subgraph Counting in Sparse Graphs","authors":"M. Bressan","doi":"10.4230/LIPIcs.IPEC.2019.6","DOIUrl":null,"url":null,"abstract":"A fundamental graph problem asks to compute the number of induced copies of a $k$-node pattern graph $H$ in an $n$-node graph $G$. The fastest algorithm to date is still the 35-years-old algorithm by Ne\\v{s}et\\v{r}il and Poljak [31], with running time $f(k) \\cdot O(n^{\\omega\\lfloor\\frac{k}{3}\\rfloor + 2})$ where $\\omega \\le 2.373$ is the matrix multiplication exponent. In this work we show that, if one takes into account the degeneracy $d$ of $G$, then the picture becomes substantially richer and leads to faster algorithms when $G$ is sufficiently sparse. More precisely, after introducing a novel notion of graph width, the \\emph{DAG-treewidth}, we prove what follows. If $H$ has DAG-treewidth $\\tau(H)$ and $G$ has degeneracy $d$, then the induced copies of $H$ in $G$ can be counted in time $f(d,k) \\cdot \\tilde{O}(n^{\\tau(H)})$; and, under the Exponential Time Hypothesis, no algorithm can solve the problem in time $f(d,k) \\cdot n^{o(\\tau(H)/\\ln \\tau(H))}$ for all $H$. This result characterises the complexity of counting subgraphs in a $d$-degenerate graph. Developing bounds on $\\tau(H)$, then, we obtain natural generalisations of classic results and faster algorithms for sparse graphs. For example, when $d=O(\\operatorname{poly}\\log(n))$ we can count the induced copies of any $H$ in time $f(k) \\cdot\\tilde{O}(n^{\\lfloor \\frac{k}{4} \\rfloor + 2})$, beating the Ne\\v{s}et\\v{r}il-Poljak algorithm by essentially a cubic factor in $n$.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2019.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A fundamental graph problem asks to compute the number of induced copies of a $k$-node pattern graph $H$ in an $n$-node graph $G$. The fastest algorithm to date is still the 35-years-old algorithm by Ne\v{s}et\v{r}il and Poljak [31], with running time $f(k) \cdot O(n^{\omega\lfloor\frac{k}{3}\rfloor + 2})$ where $\omega \le 2.373$ is the matrix multiplication exponent. In this work we show that, if one takes into account the degeneracy $d$ of $G$, then the picture becomes substantially richer and leads to faster algorithms when $G$ is sufficiently sparse. More precisely, after introducing a novel notion of graph width, the \emph{DAG-treewidth}, we prove what follows. If $H$ has DAG-treewidth $\tau(H)$ and $G$ has degeneracy $d$, then the induced copies of $H$ in $G$ can be counted in time $f(d,k) \cdot \tilde{O}(n^{\tau(H)})$; and, under the Exponential Time Hypothesis, no algorithm can solve the problem in time $f(d,k) \cdot n^{o(\tau(H)/\ln \tau(H))}$ for all $H$. This result characterises the complexity of counting subgraphs in a $d$-degenerate graph. Developing bounds on $\tau(H)$, then, we obtain natural generalisations of classic results and faster algorithms for sparse graphs. For example, when $d=O(\operatorname{poly}\log(n))$ we can count the induced copies of any $H$ in time $f(k) \cdot\tilde{O}(n^{\lfloor \frac{k}{4} \rfloor + 2})$, beating the Ne\v{s}et\v{r}il-Poljak algorithm by essentially a cubic factor in $n$.
稀疏图中更快的子图计数
一个基本的图问题要求在一个$n$ -节点图$G$中计算一个$k$ -节点模式图$H$的诱导拷贝数。目前最快的算法仍然是Ne \v{s} et \v{r} il和Poljak[31] 35年前的算法,其运行时间为$f(k) \cdot O(n^{\omega\lfloor\frac{k}{3}\rfloor + 2})$,其中$\omega \le 2.373$为矩阵乘法指数。在这项工作中,我们表明,如果考虑到$G$的退化$d$,那么当$G$足够稀疏时,图像会变得更加丰富,并导致更快的算法。更准确地说,在引入图宽度的新概念\emph{dag树宽度}之后,我们证明了以下内容。如果$H$具有dag -tree - width $\tau(H)$且$G$具有简并度$d$,则可以及时统计$G$中$H$的诱导拷贝$f(d,k) \cdot \tilde{O}(n^{\tau(H)})$;并且,在指数时间假设下,没有任何算法能够及时解决所有$H$的问题$f(d,k) \cdot n^{o(\tau(H)/\ln \tau(H))}$。这个结果表征了在$d$ -退化图中计算子图的复杂性。然后,在$\tau(H)$上发展边界,我们得到经典结果的自然推广和稀疏图的更快算法。例如,当$d=O(\operatorname{poly}\log(n))$时,我们可以及时计算任何$H$的诱导副本$f(k) \cdot\tilde{O}(n^{\lfloor \frac{k}{4} \rfloor + 2})$,比Ne \v{s} et \v{r} il-Poljak算法高出一个三次因子(实质上是$n$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信