Evaluation of Hybrid Collaborative Filtering Approach with Context-Sensitive Recommendation System

D. F. Murad, Rosilah Hassan, B. Wijanarko, Riyan Leandros, S. A. Murad
{"title":"Evaluation of Hybrid Collaborative Filtering Approach with Context-Sensitive Recommendation System","authors":"D. F. Murad, Rosilah Hassan, B. Wijanarko, Riyan Leandros, S. A. Murad","doi":"10.1109/ICBIR54589.2022.9786506","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the recommendation system we have implemented. The test was carried out using student profile data with (1) adding contextual information and (2) without contextual information. The evaluation was carried out using three predictive methods, user collaborative filtering, item collaborative filtering, and hybrid. We use the correlation coefficient to determine which method has the best correlation coefficient between the predicted and actual values. In this experiment, the best method for predicting the actual value is to use a user-based collaborative filtering method. A low correlation coefficient indicates that a machine learning model is needed to learn the predictive formula of the predictor features and their actual values. The test results using these three methods show that the correlation coefficient between the actual value and the predicted value using user-based collaborative filtering is the highest. Meanwhile, the lowest correlation coefficient between the actual value and predicted values using item collaborative filtering is the lowest. The results of this study prove that contextual information as an additional feature of student profiles increases the correlation coefficient between actual and predicted scores using a user collaborative filter.","PeriodicalId":216904,"journal":{"name":"2022 7th International Conference on Business and Industrial Research (ICBIR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR54589.2022.9786506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study aims to evaluate the recommendation system we have implemented. The test was carried out using student profile data with (1) adding contextual information and (2) without contextual information. The evaluation was carried out using three predictive methods, user collaborative filtering, item collaborative filtering, and hybrid. We use the correlation coefficient to determine which method has the best correlation coefficient between the predicted and actual values. In this experiment, the best method for predicting the actual value is to use a user-based collaborative filtering method. A low correlation coefficient indicates that a machine learning model is needed to learn the predictive formula of the predictor features and their actual values. The test results using these three methods show that the correlation coefficient between the actual value and the predicted value using user-based collaborative filtering is the highest. Meanwhile, the lowest correlation coefficient between the actual value and predicted values using item collaborative filtering is the lowest. The results of this study prove that contextual information as an additional feature of student profiles increases the correlation coefficient between actual and predicted scores using a user collaborative filter.
基于上下文敏感推荐系统的混合协同过滤方法评价
本研究旨在评估我们已经实现的推荐系统。测试使用(1)添加上下文信息和(2)不添加上下文信息的学生档案数据进行。采用用户协同过滤、项目协同过滤和混合预测三种预测方法进行评价。我们用相关系数来确定哪种方法的预测值和实际值之间的相关系数最好。在本实验中,预测实际值的最佳方法是使用基于用户的协同过滤方法。如果相关系数较低,则需要机器学习模型来学习预测特征的预测公式及其实际值。三种方法的测试结果表明,基于用户的协同过滤的实际值与预测值之间的相关系数最高。同时,项目协同过滤的实际值与预测值之间的最小相关系数最小。本研究的结果证明,上下文信息作为学生档案的附加特征,使用用户协同过滤器增加了实际分数和预测分数之间的相关系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信