Goal orientated stroke rehabilitation utilising electrical stimulation, iterative learning and Microsoft Kinect

T. Exell, C. Freeman, K. Meadmore, M. Kutlu, E. Rogers, A. Hughes, E. Hallewell, J. Burridge
{"title":"Goal orientated stroke rehabilitation utilising electrical stimulation, iterative learning and Microsoft Kinect","authors":"T. Exell, C. Freeman, K. Meadmore, M. Kutlu, E. Rogers, A. Hughes, E. Hallewell, J. Burridge","doi":"10.1109/ICORR.2013.6650493","DOIUrl":null,"url":null,"abstract":"An upper-limb stroke rehabilitation system is developed that assists patients in performing real world functionally relevant reaching tasks. The system provides de-weighting of the arm via a simple spring support whilst functional electrical stimulation is applied to the anterior deltoid and triceps via surface electrodes, and to the wrist and hand extensors via a 40 element surface electrode array. Iterative learning control (ILC) is used to mediate the electrical stimulation, and updates the stimulation signal applied to each muscle group based on the error between the ideal and actual movement in the previous attempt. The control system applies the minimum amount of stimulation required, maximising voluntary effort. Low-cost, markerless motion tracking is provided via a Microsoft Kinect, with hand and wrist data provided by an electrogoniometer or data glove. The system is described and initial experimental results are presented for a stroke patient starting treatment.","PeriodicalId":340643,"journal":{"name":"2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2013.6650493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

An upper-limb stroke rehabilitation system is developed that assists patients in performing real world functionally relevant reaching tasks. The system provides de-weighting of the arm via a simple spring support whilst functional electrical stimulation is applied to the anterior deltoid and triceps via surface electrodes, and to the wrist and hand extensors via a 40 element surface electrode array. Iterative learning control (ILC) is used to mediate the electrical stimulation, and updates the stimulation signal applied to each muscle group based on the error between the ideal and actual movement in the previous attempt. The control system applies the minimum amount of stimulation required, maximising voluntary effort. Low-cost, markerless motion tracking is provided via a Microsoft Kinect, with hand and wrist data provided by an electrogoniometer or data glove. The system is described and initial experimental results are presented for a stroke patient starting treatment.
目标导向中风康复利用电刺激,迭代学习和微软Kinect
开发了一种上肢中风康复系统,帮助患者执行现实世界中与功能相关的到达任务。该系统通过一个简单的弹簧支撑来减轻手臂的重量,同时通过表面电极对前三角肌和三头肌施加功能性电刺激,并通过40单元表面电极阵列对手腕和手伸肌施加电刺激。迭代学习控制(Iterative learning control, ILC)作为电刺激的中介,根据之前尝试的理想运动与实际运动之间的误差,更新施加到各个肌肉群的刺激信号。控制系统应用所需的最小刺激量,最大化自主努力。低成本、无标记的运动跟踪是通过微软Kinect提供的,手和手腕的数据由电测器或数据手套提供。本文描述了该系统,并给出了脑卒中患者开始治疗的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信