Handwritten country name identification using vector quantisation and hidden Markov model

G. Leedham, W. Tan, Weng Lee Yap
{"title":"Handwritten country name identification using vector quantisation and hidden Markov model","authors":"G. Leedham, W. Tan, Weng Lee Yap","doi":"10.1109/ICDAR.2001.953877","DOIUrl":null,"url":null,"abstract":"This paper is a study of keyword recognition using vector quantisation and a hidden Markov model. The purpose is to be able to identify a word holistically. This study considers the problem of identifying a handwritten country name from the 189 different country names registered with the Universal Postal Union. The method divides the words in the last line of the address image into 16/spl times/16 pixel blocks which are fed into a vector quantiser. The VQ outputs are classified using a HMM. Some presorting is carried out based on the letter-length of the word. The results on a set of 415 handwritten country names show the method is 85.3% correct with the majority of errors in estimating the letter-length of the word and distorted VQ output due to sloping and slanted words/letters.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is a study of keyword recognition using vector quantisation and a hidden Markov model. The purpose is to be able to identify a word holistically. This study considers the problem of identifying a handwritten country name from the 189 different country names registered with the Universal Postal Union. The method divides the words in the last line of the address image into 16/spl times/16 pixel blocks which are fed into a vector quantiser. The VQ outputs are classified using a HMM. Some presorting is carried out based on the letter-length of the word. The results on a set of 415 handwritten country names show the method is 85.3% correct with the majority of errors in estimating the letter-length of the word and distorted VQ output due to sloping and slanted words/letters.
使用矢量量化和隐马尔可夫模型的手写国家名称识别
本文研究了基于向量量化和隐马尔可夫模型的关键词识别方法。目的是为了能够从整体上识别一个单词。本研究考虑了在万国邮政联盟注册的189个不同国家名称中识别手写国家名称的问题。该方法将地址图像最后一行的单词分成16/spl倍/16个像素块,这些像素块被送入矢量量化器。VQ输出使用HMM进行分类。根据单词的字母长度进行一些排序。在一组415个手写国家名称上的结果表明,该方法的正确率为85.3%,其中大多数错误是在估计单词的字母长度和由于倾斜和倾斜的单词/字母而扭曲的VQ输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信