Optimizing sparse matrix computations through compiler-assisted programming

K. Rietveld, H. Wijshoff
{"title":"Optimizing sparse matrix computations through compiler-assisted programming","authors":"K. Rietveld, H. Wijshoff","doi":"10.1145/2903150.2903157","DOIUrl":null,"url":null,"abstract":"Existing high-performance implementations of sparse matrix codes are intricate and result in large code bases. In fact, a single floating-point operation requires 400 to 600 lines of additional code to \"prepare\" this operation. This imbalance severely obscures code development, thereby complicating maintenance and portability. In this paper, we propose a drastically different approach in order to continue to effectively handle these codes. We propose to only specify the essence of the computation on the level of individual matrix elements. All additional source code to embed these computations are then generated and optimized automatically by the compiler. This approach is far superior to existing library approaches and allows code to perform scatter/gather operations, matrix reordering, matrix data structure handling, handling of fill-in, etc., to be generated automatically. Experiments show that very efficient data structures can be generated and the resulting codes can be very competitive.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Existing high-performance implementations of sparse matrix codes are intricate and result in large code bases. In fact, a single floating-point operation requires 400 to 600 lines of additional code to "prepare" this operation. This imbalance severely obscures code development, thereby complicating maintenance and portability. In this paper, we propose a drastically different approach in order to continue to effectively handle these codes. We propose to only specify the essence of the computation on the level of individual matrix elements. All additional source code to embed these computations are then generated and optimized automatically by the compiler. This approach is far superior to existing library approaches and allows code to perform scatter/gather operations, matrix reordering, matrix data structure handling, handling of fill-in, etc., to be generated automatically. Experiments show that very efficient data structures can be generated and the resulting codes can be very competitive.
通过编译器辅助编程优化稀疏矩阵计算
现有的稀疏矩阵代码的高性能实现是复杂的,并且导致大量的代码库。事实上,一个浮点操作需要400到600行额外的代码来“准备”这个操作。这种不平衡严重地模糊了代码开发,从而使维护和可移植性复杂化。在本文中,我们提出了一种完全不同的方法,以便继续有效地处理这些代码。我们建议只在单个矩阵元素的水平上指定计算的本质。然后编译器会自动生成和优化嵌入这些计算的所有附加源代码。这种方法远远优于现有的库方法,并允许代码自动生成分散/收集操作、矩阵重新排序、矩阵数据结构处理、填充处理等。实验表明,可以生成非常高效的数据结构,并且生成的代码具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信