The Ordered and Colored Products in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations in Concurrent Processes

O. Bodini, M. Dien, Antoine Genitrini, F. Peschanski
{"title":"The Ordered and Colored Products in Analytic Combinatorics: Application to the Quantitative Study of Synchronizations in Concurrent Processes","authors":"O. Bodini, M. Dien, Antoine Genitrini, F. Peschanski","doi":"10.1137/1.9781611974775.2","DOIUrl":null,"url":null,"abstract":"In this paper, we study two operators for composing combinatorial classes: the ordered product and its dual, the colored product. These operators have a natural interpretation in terms of Analytic Combinatorics, in relation with combinations of Borel and Laplace transforms. Based on these new constructions, we exhibit a set of transfer theorems and closure properties. We also illustrate the use of these operators to specify increasingly labeled structures tightly related to Series-Parallel constructions and concurrent processes. In particular, we provide a quantitative analysis of Fork/Join (FJ) parallel processes, a particularly expressive example of such a class.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we study two operators for composing combinatorial classes: the ordered product and its dual, the colored product. These operators have a natural interpretation in terms of Analytic Combinatorics, in relation with combinations of Borel and Laplace transforms. Based on these new constructions, we exhibit a set of transfer theorems and closure properties. We also illustrate the use of these operators to specify increasingly labeled structures tightly related to Series-Parallel constructions and concurrent processes. In particular, we provide a quantitative analysis of Fork/Join (FJ) parallel processes, a particularly expressive example of such a class.
解析组合中的有序积和有色积:在并发过程同步性定量研究中的应用
本文研究了组合类的两个算子:有序积及其对偶——彩色积。这些算子在分析组合学中有一个自然的解释,与Borel变换和拉普拉斯变换的组合有关。基于这些新的构造,我们展示了一组传递定理和闭包性质。我们还说明了使用这些运算符来指定与串并联结构和并发过程紧密相关的日益标记的结构。特别是,我们提供了Fork/Join (FJ)并行进程的定量分析,这是此类的一个特别有表现力的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信