Interval arithmetic applied to polynomial remainder sequences

J. Pinkert
{"title":"Interval arithmetic applied to polynomial remainder sequences","authors":"J. Pinkert","doi":"10.1145/800205.806337","DOIUrl":null,"url":null,"abstract":"Polynomial remainder sequences are the basis of many important algorithms in symbolic and algebraic manipulation. In a number of these algorithms, the actual coefficients of the sequence are not required; rather, the method uses the signs of the coefficients. Present techniques, however, compute the exact coefficients (or a mixed radix representation of them), and then obtain the signs. This paper discusses a new approach in which interval arithmetic is used to obtain the signs of the coefficients without computing their exact values. Comparisons of this method with analogous standard techniques show empirical computing time reductions of two orders of magnitude for even relatively small cases.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800205.806337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Polynomial remainder sequences are the basis of many important algorithms in symbolic and algebraic manipulation. In a number of these algorithms, the actual coefficients of the sequence are not required; rather, the method uses the signs of the coefficients. Present techniques, however, compute the exact coefficients (or a mixed radix representation of them), and then obtain the signs. This paper discusses a new approach in which interval arithmetic is used to obtain the signs of the coefficients without computing their exact values. Comparisons of this method with analogous standard techniques show empirical computing time reductions of two orders of magnitude for even relatively small cases.
区间算术应用于多项式余数序列
多项式余数列是符号和代数运算中许多重要算法的基础。在许多这些算法中,序列的实际系数是不需要的;相反,该方法使用系数的符号。然而,目前的技术是计算精确的系数(或它们的混合基数表示),然后获得符号。本文讨论了用区间算法求系数的符号而不计算其精确值的一种新方法。这种方法与类似的标准技术的比较表明,即使在相对较小的情况下,经验计算时间也减少了两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信