A. Choudhuri, M. Green, Abhishek Jain, Gabriel Kaptchuk, Ian Miers
{"title":"Fairness in an Unfair World: Fair Multiparty Computation from Public Bulletin Boards","authors":"A. Choudhuri, M. Green, Abhishek Jain, Gabriel Kaptchuk, Ian Miers","doi":"10.1145/3133956.3134092","DOIUrl":null,"url":null,"abstract":"Secure multiparty computation allows mutually distrusting parties to compute a function on their private inputs such that nothing but the function output is revealed. Achieving fairness --- that all parties learn the output or no one does -- is a long studied problem with known impossibility results in the standard model if a majority of parties are dishonest. We present a new model for achieving fairness in MPC against dishonest majority by using public bulletin boards implemented via existing infrastructure such as blockchains or Google's certificate transparency logs. We present both theoretical and practical constructions using either witness encryption or trusted hardware (such as Intel SGX). Unlike previous works that either penalize an aborting party or achieve weaker notions such as $\\Delta$-fairness, we achieve complete fairness using existing infrastructure.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
Abstract
Secure multiparty computation allows mutually distrusting parties to compute a function on their private inputs such that nothing but the function output is revealed. Achieving fairness --- that all parties learn the output or no one does -- is a long studied problem with known impossibility results in the standard model if a majority of parties are dishonest. We present a new model for achieving fairness in MPC against dishonest majority by using public bulletin boards implemented via existing infrastructure such as blockchains or Google's certificate transparency logs. We present both theoretical and practical constructions using either witness encryption or trusted hardware (such as Intel SGX). Unlike previous works that either penalize an aborting party or achieve weaker notions such as $\Delta$-fairness, we achieve complete fairness using existing infrastructure.