Comparing and combining some popular NER approaches on Biomedical tasks

Harsh Verma, S. Bergler, Narjes Tahaei
{"title":"Comparing and combining some popular NER approaches on Biomedical tasks","authors":"Harsh Verma, S. Bergler, Narjes Tahaei","doi":"10.48550/arXiv.2305.19120","DOIUrl":null,"url":null,"abstract":"We compare three simple and popular approaches for NER: 1) SEQ (sequence labeling with a linear token classifier) 2) SeqCRF (sequence labeling with Conditional Random Fields), and 3) SpanPred (span prediction with boundary token embeddings). We compare the approaches on 4 biomedical NER tasks: GENIA, NCBI-Disease, LivingNER (Spanish), and SocialDisNER (Spanish). The SpanPred model demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 1.3 and 0.6 F1 respectively. The SeqCRF model also demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 0.2 F1 and 0.7 respectively. The SEQ model is competitive with the state-of-the-art on LivingNER dataset. We explore some simple ways of combining the three approaches. We find that majority voting consistently gives high precision and high F1 across all 4 datasets.Lastly, we implement a system that learns to combine SEQ’s and SpanPred’s predictions, generating systems that give high recall and high F1 across all 4 datasets. On the GENIA dataset, we find that our learned combiner system significantly boosts F1(+1.2) and recall(+2.1) over the systems being combined.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.19120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We compare three simple and popular approaches for NER: 1) SEQ (sequence labeling with a linear token classifier) 2) SeqCRF (sequence labeling with Conditional Random Fields), and 3) SpanPred (span prediction with boundary token embeddings). We compare the approaches on 4 biomedical NER tasks: GENIA, NCBI-Disease, LivingNER (Spanish), and SocialDisNER (Spanish). The SpanPred model demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 1.3 and 0.6 F1 respectively. The SeqCRF model also demonstrates state-of-the-art performance on LivingNER and SocialDisNER, improving F1 by 0.2 F1 and 0.7 respectively. The SEQ model is competitive with the state-of-the-art on LivingNER dataset. We explore some simple ways of combining the three approaches. We find that majority voting consistently gives high precision and high F1 across all 4 datasets.Lastly, we implement a system that learns to combine SEQ’s and SpanPred’s predictions, generating systems that give high recall and high F1 across all 4 datasets. On the GENIA dataset, we find that our learned combiner system significantly boosts F1(+1.2) and recall(+2.1) over the systems being combined.
比较和结合一些流行的生物医学任务的NER方法
我们比较了三种简单而流行的NER方法:1)SEQ(使用线性标记分类器的序列标记)2)SeqCRF(使用条件随机场的序列标记)和3)SpanPred(使用边界标记嵌入的跨度预测)。我们比较了4种生物医学NER任务的方法:GENIA、NCBI-Disease、LivingNER(西班牙语)和SocialDisNER(西班牙语)。SpanPred模型在LivingNER和SocialDisNER上展示了最先进的性能,分别将F1提高了1.3和0.6 F1。SeqCRF模型也在LivingNER和SocialDisNER上展示了最先进的性能,分别将F1提高了0.2 F1和0.7 F1。SEQ模型与最先进的LivingNER数据集具有竞争力。我们将探讨结合这三种方法的一些简单方法。我们发现多数投票在所有4个数据集上始终具有高精度和高F1。最后,我们实现了一个系统,该系统可以学习结合SEQ和SpanPred的预测,生成在所有4个数据集上具有高召回率和高F1的系统。在GENIA数据集上,我们发现我们的学习组合系统比被组合的系统显著提高了F1(+1.2)和召回率(+2.1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信