{"title":"Efficient Algorithms for Accelerometer-Based Wearable Hand Gesture Recognition Systems","authors":"Gorka Marques, Koldo Basterretxea","doi":"10.1109/EUC.2015.25","DOIUrl":null,"url":null,"abstract":"The rapid increase in the use of robotic systems in industrial and domestic environments makes it necessary the development of more natural interaction procedures. This paper presents the development of a user-specific hand Gesture Recognition System (GRS) based on the information of a single tri-axial accelerometer to recognize 7 different dynamic gestures for natural Human Machine Interaction (HMI). The aim of this paper is to analyze and compare different computational methods for feature extraction, dimensionality reduction, and vector classification in order to select the most suitable combination of signal processing stages that meets the performance requirements for a single-chip, wearable GRS system. These requirements are lag-free response, low size, and low power consumption while keeping high recognition accuracy. Experimental results show that the overall achievable accuracy can be up to 98% for Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) predictors, and 99% for Support Vector Machines (SVM).","PeriodicalId":299207,"journal":{"name":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC.2015.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The rapid increase in the use of robotic systems in industrial and domestic environments makes it necessary the development of more natural interaction procedures. This paper presents the development of a user-specific hand Gesture Recognition System (GRS) based on the information of a single tri-axial accelerometer to recognize 7 different dynamic gestures for natural Human Machine Interaction (HMI). The aim of this paper is to analyze and compare different computational methods for feature extraction, dimensionality reduction, and vector classification in order to select the most suitable combination of signal processing stages that meets the performance requirements for a single-chip, wearable GRS system. These requirements are lag-free response, low size, and low power consumption while keeping high recognition accuracy. Experimental results show that the overall achievable accuracy can be up to 98% for Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) predictors, and 99% for Support Vector Machines (SVM).