Discriminant Analysis of Industrial Gases for Electronic Nose Applications

A. Rehman, A. Bermak
{"title":"Discriminant Analysis of Industrial Gases for Electronic Nose Applications","authors":"A. Rehman, A. Bermak","doi":"10.1109/CIVEMSA.2018.8439969","DOIUrl":null,"url":null,"abstract":"This work is a part of ongoing research project for optimization of the Electronic Nose System (ENS) for its applications related to the identification of industrial gases. Two different experimental datasets of several gases are collected in a laboratory setup using two different sensor arrays. A dataset of six different gases (C3H8, Cl2, CO, CO2, SO2 and NO2 is collected using a commercially available array of seven Figaro gas sensors. Another dataset of three gases (C2H6O, CH4 and CO) is collected using a 4 × 4 tin-oxide sensors array which is built in the In-house foundry. In this paper some of the existing state of the art classification models are tested for the classification of experimentally acquired datasets. The existing classification models are used to analyze the behavior of the data acquired. The models that are tested for identification of gases are Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Regularized Discriminant Analysis (RDA), and K-Nearest Neighbor (KNN). Besides testing these classification models, fuzzy C means (FCM) clustering is also tested for the separation of clusters of gases.","PeriodicalId":305399,"journal":{"name":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2018.8439969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work is a part of ongoing research project for optimization of the Electronic Nose System (ENS) for its applications related to the identification of industrial gases. Two different experimental datasets of several gases are collected in a laboratory setup using two different sensor arrays. A dataset of six different gases (C3H8, Cl2, CO, CO2, SO2 and NO2 is collected using a commercially available array of seven Figaro gas sensors. Another dataset of three gases (C2H6O, CH4 and CO) is collected using a 4 × 4 tin-oxide sensors array which is built in the In-house foundry. In this paper some of the existing state of the art classification models are tested for the classification of experimentally acquired datasets. The existing classification models are used to analyze the behavior of the data acquired. The models that are tested for identification of gases are Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Regularized Discriminant Analysis (RDA), and K-Nearest Neighbor (KNN). Besides testing these classification models, fuzzy C means (FCM) clustering is also tested for the separation of clusters of gases.
电子鼻用工业气体判别分析
这项工作是正在进行的电子鼻系统(ENS)优化研究项目的一部分,用于与工业气体识别相关的应用。在实验室设置中,使用两种不同的传感器阵列收集几种气体的两种不同的实验数据集。六种不同的气体(C3H8、Cl2、CO、CO2、SO2和NO2)的数据集是由七个费加罗气体传感器组成的市售阵列收集的。另一个三种气体(c2h60, CH4和CO)的数据集是使用内置在内部铸造厂的4 × 4锡氧化物传感器阵列收集的。本文对现有的一些最先进的分类模型进行了测试,用于实验获取的数据集的分类。现有的分类模型用于分析所获取数据的行为。用于气体识别的测试模型有线性判别分析(LDA)、二次判别分析(QDA)、正则化判别分析(RDA)和k -最近邻(KNN)。除了测试这些分类模型外,还测试了模糊C均值(FCM)聚类对气体簇分离的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信