Antonino Freno, Martin Saveski, Rodolphe Jenatton, C. Archambeau
{"title":"One-Pass Ranking Models for Low-Latency Product Recommendations","authors":"Antonino Freno, Martin Saveski, Rodolphe Jenatton, C. Archambeau","doi":"10.1145/2783258.2788579","DOIUrl":null,"url":null,"abstract":"Purchase logs collected in e-commerce platforms provide rich information about customer preferences. These logs can be leveraged to improve the quality of product recommendations by feeding them to machine-learned ranking models. However, a variety of deployment constraints limit the naive applicability of machine learning to this problem. First, the amount and the dimensionality of the data make in-memory learning simply not possible. Second, the drift of customers' preference over time require to retrain the ranking model regularly with freshly collected data. This limits the time that is available for training to prohibitively short intervals. Third, ranking in real-time is necessary whenever the query complexity prevents us from caching the predictions. This constraint requires to minimize prediction time (or equivalently maximize the data throughput), which in turn may prevent us from achieving the accuracy necessary in web-scale industrial applications. In this paper, we investigate how the practical challenges faced in this setting can be tackled via an online learning to rank approach. Sparse models will be the key to reduce prediction latency, whereas one-pass stochastic optimization will minimize the training time and restrict the memory footprint. Interestingly, and perhaps surprisingly, extensive experiments show that one-pass learning preserves most of the predictive performance. Additionally, we study a variety of online learning algorithms that enforce sparsity and provide insights to help the practitioner make an informed decision about which approach to pick. We report results on a massive purchase log dataset from the Amazon retail website, as well as on several benchmarks from the LETOR corpus.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2788579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Purchase logs collected in e-commerce platforms provide rich information about customer preferences. These logs can be leveraged to improve the quality of product recommendations by feeding them to machine-learned ranking models. However, a variety of deployment constraints limit the naive applicability of machine learning to this problem. First, the amount and the dimensionality of the data make in-memory learning simply not possible. Second, the drift of customers' preference over time require to retrain the ranking model regularly with freshly collected data. This limits the time that is available for training to prohibitively short intervals. Third, ranking in real-time is necessary whenever the query complexity prevents us from caching the predictions. This constraint requires to minimize prediction time (or equivalently maximize the data throughput), which in turn may prevent us from achieving the accuracy necessary in web-scale industrial applications. In this paper, we investigate how the practical challenges faced in this setting can be tackled via an online learning to rank approach. Sparse models will be the key to reduce prediction latency, whereas one-pass stochastic optimization will minimize the training time and restrict the memory footprint. Interestingly, and perhaps surprisingly, extensive experiments show that one-pass learning preserves most of the predictive performance. Additionally, we study a variety of online learning algorithms that enforce sparsity and provide insights to help the practitioner make an informed decision about which approach to pick. We report results on a massive purchase log dataset from the Amazon retail website, as well as on several benchmarks from the LETOR corpus.