Rock-physics based Augmented Machine Learning for Reservoir Characterization

J. Downton, O. Collet, T. Colwell
{"title":"Rock-physics based Augmented Machine Learning for Reservoir Characterization","authors":"J. Downton, O. Collet, T. Colwell","doi":"10.3997/2214-4609.2019x610102","DOIUrl":null,"url":null,"abstract":"Summary The challenge in adopting neural networks in the geosciences is the relative scarcity of labeled training data. This presentation demonstrates an approach to augment the amount of data used to train the neural network. Rock Physics theory is used to model the elastic parameter response due to changes in the rock and fluid properties of the local well control to generate a large number of pseudo wells. These pseudo wells are then used to model synthetic seismic gathers which are then used to train a Deep Neural Network (DNN). The trained DNN is then applied to the real dataset. Application of this workflow is shown for seismic reservoir characterization on a field in the North Sea producing commercial volumes of oil. The results are shown to have good continuity, are high in resolution which is compared to the prestack inversion approach.","PeriodicalId":369295,"journal":{"name":"EAGE Subsurface Intelligence Workshop","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAGE Subsurface Intelligence Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.2019x610102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary The challenge in adopting neural networks in the geosciences is the relative scarcity of labeled training data. This presentation demonstrates an approach to augment the amount of data used to train the neural network. Rock Physics theory is used to model the elastic parameter response due to changes in the rock and fluid properties of the local well control to generate a large number of pseudo wells. These pseudo wells are then used to model synthetic seismic gathers which are then used to train a Deep Neural Network (DNN). The trained DNN is then applied to the real dataset. Application of this workflow is shown for seismic reservoir characterization on a field in the North Sea producing commercial volumes of oil. The results are shown to have good continuity, are high in resolution which is compared to the prestack inversion approach.
基于岩石物理的增强机器学习油藏表征
在地球科学中采用神经网络的挑战是标记训练数据的相对稀缺性。本演示演示了一种增加用于训练神经网络的数据量的方法。利用岩石物理理论对局部井控岩石和流体性质变化引起的弹性参数响应进行建模,生成大量伪井。然后,这些伪井被用来模拟合成地震聚集,然后用于训练深度神经网络(DNN)。然后将训练好的DNN应用于实际数据集。该工作流程应用于北海某油田的地震储层表征,该油田具有商业产量。结果表明,与叠前反演方法相比,反演结果具有较好的连续性和较高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信