Statistical inference by stereo vision: geometric information criterion

Yasushi Kanazawa, K. Kanatani
{"title":"Statistical inference by stereo vision: geometric information criterion","authors":"Yasushi Kanazawa, K. Kanatani","doi":"10.1109/IROS.1996.568981","DOIUrl":null,"url":null,"abstract":"Introducing a mathematical model of noise in stereo images, we define the geometric information criterion (geometric AIC) for evaluating the goodness of an assumption about the object we are viewing. We show that we can test whether or not the object is located infinitely far away or the object is a planar surface without using any knowledge about the noise magnitude or any empirically adjustable thresholds. Synthetic and real-image examples are shown to illustrate our theory.","PeriodicalId":374871,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1996.568981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introducing a mathematical model of noise in stereo images, we define the geometric information criterion (geometric AIC) for evaluating the goodness of an assumption about the object we are viewing. We show that we can test whether or not the object is located infinitely far away or the object is a planar surface without using any knowledge about the noise magnitude or any empirically adjustable thresholds. Synthetic and real-image examples are shown to illustrate our theory.
立体视觉统计推断:几何信息准则
引入立体图像中噪声的数学模型,定义了几何信息准则(geometric information criterion, AIC),用于评价所观察物体的假设是否正确。我们表明,我们可以在不使用任何关于噪声大小或任何经验可调阈值的知识的情况下测试物体是否位于无限远的地方或物体是否是一个平面。通过合成和实像的例子来说明我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信