Image Processing Methods for Oral Macules and Spots Segmentation

Carolina Kelsch, Jean Schmith, R. Gomes, V. Carrard, R. M. D. Figueiredo
{"title":"Image Processing Methods for Oral Macules and Spots Segmentation","authors":"Carolina Kelsch, Jean Schmith, R. Gomes, V. Carrard, R. M. D. Figueiredo","doi":"10.5753/sbcas.2023.229664","DOIUrl":null,"url":null,"abstract":"Oral cancers are the 16th most common type of cancer in the world and present a high mortality rate. This is mainly because they are frequently discovered in an advanced stage due to the lack of specialized professionals. Some clinical characteristics such as borders and symmetry can aid in cancer diagnosis, and therefore the segmentation of the lesions is important. In light of this, this work aimed to present and evaluate different analytic methods to perform automatic segmentation of oral macules and spots from 21 clinical images. From the tested methods, the one with the best result reached an accuracy of 84.9%, a precision of 70.1%, a recall of 75.3%, and an f1-score of 60.8%, which are similar outcomes of published works that used artificial intelligence.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oral cancers are the 16th most common type of cancer in the world and present a high mortality rate. This is mainly because they are frequently discovered in an advanced stage due to the lack of specialized professionals. Some clinical characteristics such as borders and symmetry can aid in cancer diagnosis, and therefore the segmentation of the lesions is important. In light of this, this work aimed to present and evaluate different analytic methods to perform automatic segmentation of oral macules and spots from 21 clinical images. From the tested methods, the one with the best result reached an accuracy of 84.9%, a precision of 70.1%, a recall of 75.3%, and an f1-score of 60.8%, which are similar outcomes of published works that used artificial intelligence.
口腔斑纹和斑点分割的图像处理方法
口腔癌是世界上第16种最常见的癌症,死亡率很高。这主要是因为由于缺乏专业人员,他们经常在晚期被发现。一些临床特征,如边界和对称性可以帮助癌症诊断,因此病灶的分割是重要的。鉴于此,本工作旨在提出和评估不同的分析方法来自动分割21张临床图像中的口腔斑疹和斑点。从测试的方法来看,结果最好的方法准确率为84.9%,精密度为70.1%,召回率为75.3%,f1得分为60.8%,这与使用人工智能的已发表作品的结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信