Planar Tree Transformation through Flips

M. Kamrul Islam, S. Haque
{"title":"Planar Tree Transformation through Flips","authors":"M. Kamrul Islam, S. Haque","doi":"10.1109/ICICT.2007.375332","DOIUrl":null,"url":null,"abstract":"A flip or edge-replacement is considered as a transformation by which one edge e of a geometric object is removed and an edge f (f ne e) is inserted such that the resulting object belongs to the same class as the original object. Here, we consider planar trees as geometric objects. In this paper, we present a technique for transforming a given planar tree into another one for a set S of n points in general position in the plane. We show that any planar tree can be transformed into another planar tree by at most 2n-k-s-2 (0(n)) flips (k > 0 and s > 0 are defined later) which is an improvement of the result in [3].","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A flip or edge-replacement is considered as a transformation by which one edge e of a geometric object is removed and an edge f (f ne e) is inserted such that the resulting object belongs to the same class as the original object. Here, we consider planar trees as geometric objects. In this paper, we present a technique for transforming a given planar tree into another one for a set S of n points in general position in the plane. We show that any planar tree can be transformed into another planar tree by at most 2n-k-s-2 (0(n)) flips (k > 0 and s > 0 are defined later) which is an improvement of the result in [3].
平面树通过翻转变换
翻转或边缘替换被认为是一种变换,通过这种变换,一个几何对象的一个边缘e被移除,一个边缘f (f ne e)被插入,这样得到的对象就属于与原始对象相同的类。在这里,我们将平面树视为几何对象。在本文中,我们提出了一种将给定平面树转换为另一个平面树的技术,该平面树的一般位置上有n个点。我们证明任何平面树最多可以通过2n-k-s-2 (0(n))次翻转(k > 0和s > 0稍后定义)转化为另一个平面树,这是对[3]结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信