A. Vaccarella, R. Sharp, M. Ellis, J. Gilbert, Shanae King, D. Adams
{"title":"Lucky imaging with the Leonardo SAPHIRA at Siding Spring Observatory","authors":"A. Vaccarella, R. Sharp, M. Ellis, J. Gilbert, Shanae King, D. Adams","doi":"10.1117/12.2539779","DOIUrl":null,"url":null,"abstract":"The Leonardo SAPHIRA is a HgCdTe linear avalanche photodiode array enabling high frame rate, high sensitivity, low noise, and low dark current imaging at near-infrared wavelengths. The ANU utilised the Leonardo SAPHIRA to develop a high cadence “Lucky Imager” which was successfully tested on sky at Siding Spring Observatory. The cryogenic electronics and cryostat were designed and built by the ANU. The cryostat was cooled with a compact Stirling cycle cryocooler with active vibration damping. Various detector control systems were tested, including an ESO 'NGC' system and also a 32 channel ARC SDSU Series III. Images were ultimately captured at a windowed frame rate of 2.2 kHz with the ESO NGC controller.","PeriodicalId":131350,"journal":{"name":"Micro + Nano Materials, Devices, and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2539779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Leonardo SAPHIRA is a HgCdTe linear avalanche photodiode array enabling high frame rate, high sensitivity, low noise, and low dark current imaging at near-infrared wavelengths. The ANU utilised the Leonardo SAPHIRA to develop a high cadence “Lucky Imager” which was successfully tested on sky at Siding Spring Observatory. The cryogenic electronics and cryostat were designed and built by the ANU. The cryostat was cooled with a compact Stirling cycle cryocooler with active vibration damping. Various detector control systems were tested, including an ESO 'NGC' system and also a 32 channel ARC SDSU Series III. Images were ultimately captured at a windowed frame rate of 2.2 kHz with the ESO NGC controller.